Example #1
0
  def testAddN(self):
    devices = ["/cpu:0"]
    if test_util.is_gpu_available():
      devices.append("/gpu:0")
    for device in devices:
      with ops.device(device):
        # With value
        opt1 = optional_ops.Optional.from_value((1.0, 2.0))
        opt2 = optional_ops.Optional.from_value((3.0, 4.0))

        add_tensor = math_ops.add_n([opt1._variant_tensor,
                                     opt2._variant_tensor])
        add_opt = optional_ops._OptionalImpl(add_tensor, opt1.value_structure)
        self.assertAllEqual(self.evaluate(add_opt.get_value()), (4.0, 6.0))

        # Without value
        opt_none1 = optional_ops.Optional.none_from_structure(
            opt1.value_structure)
        opt_none2 = optional_ops.Optional.none_from_structure(
            opt2.value_structure)
        add_tensor = math_ops.add_n([opt_none1._variant_tensor,
                                     opt_none2._variant_tensor])
        add_opt = optional_ops._OptionalImpl(add_tensor,
                                             opt_none1.value_structure)
        self.assertFalse(self.evaluate(add_opt.has_value()))
Example #2
0
  def testCopyToGPU(self):
    if not test_util.is_gpu_available():
      self.skipTest("No GPU available")

    with ops.device("/cpu:0"):
      optional_with_value = optional_ops.Optional.from_value(
          (constant_op.constant(37.0), constant_op.constant("Foo"),
           constant_op.constant(42)))
      optional_none = optional_ops.Optional.none_from_structure(
          structure.TensorStructure(dtypes.float32, []))

    with ops.device("/gpu:0"):
      gpu_optional_with_value = optional_ops._OptionalImpl(
          array_ops.identity(optional_with_value._variant_tensor),
          optional_with_value.value_structure)
      gpu_optional_none = optional_ops._OptionalImpl(
          array_ops.identity(optional_none._variant_tensor),
          optional_none.value_structure)

      gpu_optional_with_value_has_value = gpu_optional_with_value.has_value()
      gpu_optional_with_value_values = gpu_optional_with_value.get_value()

      gpu_optional_none_has_value = gpu_optional_none.has_value()

    self.assertTrue(self.evaluate(gpu_optional_with_value_has_value))
    self.assertEqual((37.0, b"Foo", 42),
                     self.evaluate(gpu_optional_with_value_values))
    self.assertFalse(self.evaluate(gpu_optional_none_has_value))
Example #3
0
  def testNestedZerosLike(self):
    devices = ["/cpu:0"]
    if test_util.is_gpu_available():
      devices.append("/gpu:0")
    for device in devices:
      with ops.device(device):
        opt1 = optional_ops.Optional.from_value(1.0)
        opt2 = optional_ops.Optional.from_value(opt1._variant_tensor)

        zeros_tensor = array_ops.zeros_like(opt2._variant_tensor)
        zeros_opt = optional_ops._OptionalImpl(zeros_tensor,
                                               opt2.value_structure)
        inner_zeros_opt = optional_ops._OptionalImpl(zeros_opt.get_value(),
                                                     opt1.value_structure)
        self.assertEqual(self.evaluate(inner_zeros_opt.get_value()), 0.0)
Example #4
0
def get_next_as_optional(iterator):
  """Returns an `Optional` that contains the next value from the iterator.

  If `iterator` has reached the end of the sequence, the returned `Optional`
  will have no value.

  Args:
    iterator: A `tf.data.Iterator` object.

  Returns:
    An `Optional` object representing the next value from the iterator (if it
    has one) or no value.
  """
  # pylint: disable=protected-access
  return optional_ops._OptionalImpl(
      gen_dataset_ops.iterator_get_next_as_optional(
          iterator._iterator_resource,
          output_types=nest.flatten(
              sparse.as_dense_types(iterator.output_types,
                                    iterator.output_classes)),
          output_shapes=nest.flatten(
              sparse.as_dense_shapes(iterator.output_shapes,
                                     iterator.output_classes))),
      structure.Structure._from_legacy_structure(iterator.output_types,
                                                 iterator.output_shapes,
                                                 iterator.output_classes))
Example #5
0
  def testNestedAddN(self):
    devices = ["/cpu:0"]
    if test_util.is_gpu_available():
      devices.append("/gpu:0")
    for device in devices:
      with ops.device(device):
        opt1 = optional_ops.Optional.from_value([1, 2.0])
        opt2 = optional_ops.Optional.from_value([3, 4.0])
        opt3 = optional_ops.Optional.from_value((5.0, opt1._variant_tensor))
        opt4 = optional_ops.Optional.from_value((6.0, opt2._variant_tensor))

        add_tensor = math_ops.add_n([opt3._variant_tensor,
                                     opt4._variant_tensor])
        add_opt = optional_ops._OptionalImpl(add_tensor, opt3.value_structure)
        self.assertEqual(self.evaluate(add_opt.get_value()[0]), 11.0)

        inner_add_opt = optional_ops._OptionalImpl(add_opt.get_value()[1],
                                                   opt1.value_structure)
        self.assertAllEqual(inner_add_opt.get_value(), [4, 6.0])
Example #6
0
  def testZerosLike(self):
    devices = ["/cpu:0"]
    if test_util.is_gpu_available():
      devices.append("/gpu:0")
    for device in devices:
      with ops.device(device):
        # With value
        opt = optional_ops.Optional.from_value((1.0, 2.0))
        zeros_tensor = array_ops.zeros_like(opt._variant_tensor)
        zeros_opt = optional_ops._OptionalImpl(zeros_tensor,
                                               opt.value_structure)
        self.assertAllEqual(self.evaluate(zeros_opt.get_value()),
                            (0.0, 0.0))

        # Without value
        opt_none = optional_ops.Optional.none_from_structure(
            opt.value_structure)
        zeros_tensor = array_ops.zeros_like(opt_none._variant_tensor)
        zeros_opt = optional_ops._OptionalImpl(zeros_tensor,
                                               opt_none.value_structure)
        self.assertFalse(self.evaluate(zeros_opt.has_value()))
Example #7
0
    def testNestedAddN(self):
        devices = ["/cpu:0"]
        if test_util.is_gpu_available():
            devices.append("/gpu:0")
        for device in devices:
            with ops.device(device):
                opt1 = optional_ops.Optional.from_value([1, 2.0])
                opt2 = optional_ops.Optional.from_value([3, 4.0])
                opt3 = optional_ops.Optional.from_value(
                    (5.0, opt1._variant_tensor))
                opt4 = optional_ops.Optional.from_value(
                    (6.0, opt2._variant_tensor))

                add_tensor = math_ops.add_n(
                    [opt3._variant_tensor, opt4._variant_tensor])
                add_opt = optional_ops._OptionalImpl(add_tensor,
                                                     opt3.value_structure)
                self.assertEqual(self.evaluate(add_opt.get_value()[0]), 11.0)

                inner_add_opt = optional_ops._OptionalImpl(
                    add_opt.get_value()[1], opt1.value_structure)
                self.assertAllEqual(inner_add_opt.get_value(), [4, 6.0])
Example #8
0
def get_next_as_optional(iterator):
    """Returns an `Optional` that contains the next value from the iterator.

  If `iterator` has reached the end of the sequence, the returned `Optional`
  will have no value.

  Args:
    iterator: A `tf.data.Iterator` object.

  Returns:
    An `Optional` object representing the next value from the iterator (if it
    has one) or no value.
  """
    # pylint: disable=protected-access
    return optional_ops._OptionalImpl(
        gen_dataset_ops.iterator_get_next_as_optional(
            iterator._iterator_resource,
            output_types=iterator._element_structure._flat_types,
            output_shapes=iterator._element_structure._flat_shapes),
        iterator._element_structure)
Example #9
0
def get_next_as_optional(iterator):
  """Returns an `Optional` that contains the next value from the iterator.

  If `iterator` has reached the end of the sequence, the returned `Optional`
  will have no value.

  Args:
    iterator: A `tf.data.Iterator` object.

  Returns:
    An `Optional` object representing the next value from the iterator (if it
    has one) or no value.
  """
  # pylint: disable=protected-access
  return optional_ops._OptionalImpl(
      gen_dataset_ops.iterator_get_next_as_optional(
          iterator._iterator_resource,
          output_types=iterator._element_structure._flat_types,
          output_shapes=iterator._element_structure._flat_shapes),
      iterator._element_structure)
def get_next_as_optional(iterator):
  """Returns a `tf.experimental.Optional` with the next element of the iterator.

  If the iterator has reached the end of the sequence, the returned
  `tf.experimental.Optional` will have no value.

  Args:
    iterator: A `tf.data.Iterator`.

  Returns:
    A `tf.experimental.Optional` object which either contains the next element
    of the iterator (if it exists) or no value.
  """
  # pylint: disable=protected-access
  return optional_ops._OptionalImpl(
      gen_dataset_ops.iterator_get_next_as_optional(
          iterator._iterator_resource,
          output_types=structure.get_flat_tensor_types(iterator.element_spec),
          output_shapes=structure.get_flat_tensor_shapes(
              iterator.element_spec)), iterator.element_spec)
Example #11
0
 def consume_optional(opt_tensor):
   value_structure = structure.TensorStructure(dtypes.float32, [])
   opt = optional_ops._OptionalImpl(opt_tensor, value_structure)
   return opt.get_value()
Example #12
0
 def consume_optional(opt_tensor):
     value_structure = tensor_spec.TensorSpec([], dtypes.float32)
     opt = optional_ops._OptionalImpl(opt_tensor, value_structure)
     return opt.get_value()
Example #13
0
 def consume_optional(opt_tensor):
     value_structure = structure.TensorStructure(dtypes.float32, [])
     opt = optional_ops._OptionalImpl(opt_tensor, value_structure)
     return opt.get_value()