Example #1
0
def run_numeric_feature_column(normalizer_fn=None):
    price = {'price': [[1., 1., 1., 1., 1., 1.], [2., 2., 2., 2., 2., 2.], [3., 3., 3., 3., 3., 3.], [4., 4., 4., 4., 4., 4.]]}
    print(price['price'])
    price_column = feature_column.numeric_column('price', shape=[6], normalizer_fn=normalizer_fn)
    price_transformed_tensor = feature_column.input_layer(price, [price_column])

    with tf.Session() as session:
        print('Result:')
        print(session.run([price_transformed_tensor]))
def run_embedding_feature_column():
    example = {'example': [['A'], ['B'], ['C'], ['D'], ['E'], ['F'], ['G'], ['H'], ['I'], ['J']]}
    print(example['example'])
    example_column = feature_column.categorical_column_with_hash_bucket('example', hash_bucket_size=15)
    example_column_embedding = feature_column.embedding_column(example_column, dimension=4)
    example_transformed_tensor = feature_column.input_layer(example, [example_column_embedding])

    with tf.Session() as session:
        session.run(tf.global_variables_initializer())
        print('Result:')
        print(session.run([example_transformed_tensor]))
Example #3
0
def run_categorical_hash_bucket_feature_column():
    example = {'example': [['A'], ['B'], ['C'], ['D']]}
    print(example['example'])
    example_column = feature_column.categorical_column_with_hash_bucket(
        'example', hash_bucket_size=7)
    example_column_identy = feature_column.indicator_column(example_column)
    example_transformed_tensor = feature_column.input_layer(
        example, [example_column_identy])

    with tf.Session() as session:
        print('Result:')
        print(session.run([example_transformed_tensor]))
Example #4
0
def run_categorical_identity_feature_column():
    example = {'example': [[1], [2], [8], [4]]}
    print(example['example'])
    example_column = feature_column.categorical_column_with_identity(
        'example', num_buckets=10)
    example_column_identity = feature_column.indicator_column(example_column)
    example_transformed_tensor = feature_column.input_layer(
        example, [example_column_identity])

    with tf.Session() as session:
        # session.run(tf.global_variables_initializer())
        session.run(tf.tables_initializer())
        print('Result:')
        print(session.run([example_transformed_tensor]))
Example #5
0
def run_categorical_vocabulary_list_feature_column():
    example = {'example': [['A'], ['B'], ['C'], ['D']]}
    print(example['example'])
    example_column = feature_column.categorical_column_with_vocabulary_list(
        'example', vocabulary_list=['A', 'D'])
    example_column_identy = feature_column.indicator_column(example_column)
    example_transformed_tensor = feature_column.input_layer(
        example, [example_column_identy])

    with tf.Session() as session:
        # session.run(tf.global_variables_initializer())
        session.run(tf.tables_initializer())
        print('Result:')
        print(session.run([example_transformed_tensor]))
def run_bucketized_feature_column():
    price = {
        'price': [[1., 1., 1., 1., 1., 1.], [2., 2., 2., 2., 2., 2.],
                  [3., 3., 3., 3., 3., 3.], [4., 4., 4., 4., 4., 4.]]
    }
    print(price['price'])
    price_column = feature_column.numeric_column('price', shape=[6])
    bucket_price = feature_column.bucketized_column(price_column,
                                                    [0, 2, 3.5, 5])
    price_transformed_tensor = feature_column.input_layer(
        price, [bucket_price])

    with tf.Session() as session:
        print('Result:')
        print(session.run([price_transformed_tensor]))