def get_constants(self, inputs, training=None): constants = [] if self.implementation != 0 and 0 < self.dropout < 1: input_shape = K.int_shape(inputs) input_dim = input_shape[-1] ones = K.ones_like(K.reshape(inputs[:, 0, 0], (-1, 1))) ones = K.tile(ones, (1, int(input_dim))) def dropped_inputs(): return K.dropout(ones, self.dropout) dp_mask = [ K.in_train_phase(dropped_inputs, ones, training=training) for _ in range(3) ] constants.append(dp_mask) else: constants.append([K.cast_to_floatx(1.) for _ in range(3)]) if 0 < self.recurrent_dropout < 1: ones = K.ones_like(K.reshape(inputs[:, 0, 0], (-1, 1))) ones = K.tile(ones, (1, self.units)) def dropped_inputs(): # pylint: disable=function-redefined return K.dropout(ones, self.recurrent_dropout) rec_dp_mask = [ K.in_train_phase(dropped_inputs, ones, training=training) for _ in range(3) ] constants.append(rec_dp_mask) else: constants.append([K.cast_to_floatx(1.) for _ in range(3)]) return constants
def compute_mask(self, inputs, mask=None): if mask is None: return None if not isinstance(mask, list): raise ValueError('`mask` should be a list.') if not isinstance(inputs, list): raise ValueError('`inputs` should be a list.') if len(mask) != len(inputs): raise ValueError('The lists `inputs` and `mask` ' 'should have the same length.') if all([m is None for m in mask]): return None # Make a list of masks while making sure # the dimensionality of each mask # is the same as the corresponding input. masks = [] for input_i, mask_i in zip(inputs, mask): if mask_i is None: # Input is unmasked. Append all 1s to masks, masks.append(K.ones_like(input_i, dtype='bool')) elif K.ndim(mask_i) < K.ndim(input_i): # Mask is smaller than the input, expand it masks.append(K.expand_dims(mask_i)) else: masks.append(mask_i) concatenated = K.concatenate(masks, axis=self.axis) return K.all(concatenated, axis=-1, keepdims=False)
def compute_mask(self, inputs, mask=None): if mask is None: return None if not isinstance(mask, list): raise ValueError('`mask` should be a list.') if not isinstance(inputs, list): raise ValueError('`inputs` should be a list.') if len(mask) != len(inputs): raise ValueError('The lists `inputs` and `mask` ' 'should have the same length.') if all([m is None for m in mask]): return None # Make a list of masks while making sure # the dimensionality of each mask # is the same as the corresponding input. masks = [] for input_i, mask_i in zip(inputs, mask): if mask_i is None: # Input is unmasked. Append all 1s to masks, # but cast it to bool first masks.append(K.cast(K.ones_like(input_i), 'bool')) elif K.ndim(mask_i) < K.ndim(input_i): # Mask is smaller than the input, expand it masks.append(K.expand_dims(mask_i)) else: masks.append(mask_i) concatenated = K.concatenate(masks, axis=self.axis) return K.all(concatenated, axis=-1, keepdims=False)
def _time_distributed_dense(x, w, b=None, dropout=None, input_dim=None, output_dim=None, timesteps=None, training=None): """Apply `y . w + b` for every temporal slice y of x. Arguments: x: input tensor. w: weight matrix. b: optional bias vector. dropout: whether to apply dropout (same dropout mask for every temporal slice of the input). input_dim: integer; optional dimensionality of the input. output_dim: integer; optional dimensionality of the output. timesteps: integer; optional number of timesteps. training: training phase tensor or boolean. Returns: Output tensor. """ if not input_dim: input_dim = K.shape(x)[2] if not timesteps: timesteps = K.shape(x)[1] if not output_dim: output_dim = K.shape(w)[1] if dropout is not None and 0. < dropout < 1.: # apply the same dropout pattern at every timestep ones = K.ones_like(K.reshape(x[:, 0, :], (-1, input_dim))) dropout_matrix = K.dropout(ones, dropout) expanded_dropout_matrix = K.repeat(dropout_matrix, timesteps) x = K.in_train_phase(x * expanded_dropout_matrix, x, training=training) # collapse time dimension and batch dimension together x = K.reshape(x, (-1, input_dim)) x = K.dot(x, w) if b is not None: x = K.bias_add(x, b) # reshape to 3D tensor if K.backend() == 'tensorflow': x = K.reshape(x, K.stack([-1, timesteps, output_dim])) x.set_shape([None, None, output_dim]) else: x = K.reshape(x, (-1, timesteps, output_dim)) return x
def call(self, inputs, states, training=None): if 0 < self.dropout < 1 and self._dropout_mask is None: self._dropout_mask = _generate_dropout_mask( K.ones_like(inputs), self.dropout, training=training, count=4) if (0 < self.recurrent_dropout < 1 and self._recurrent_dropout_mask is None): self._recurrent_dropout_mask = _generate_dropout_mask( K.ones_like(states[1]), self.recurrent_dropout, training=training, count=4) # dropout matrices for input units dp_mask = self._dropout_mask # dropout matrices for recurrent units rec_dp_mask = self._recurrent_dropout_mask h_tm1 = states[0] # previous memory state c_tm1 = states[1] # previous carry state if 0 < self.dropout < 1.: inputs_i = inputs * dp_mask[0] inputs_f = inputs * dp_mask[1] inputs_c = inputs * dp_mask[2] inputs_o = inputs * dp_mask[3] else: inputs_i = inputs inputs_f = inputs inputs_c = inputs inputs_o = inputs if 0 < self.recurrent_dropout < 1.: h_tm1_i = h_tm1 * rec_dp_mask[0] h_tm1_f = h_tm1 * rec_dp_mask[1] h_tm1_c = h_tm1 * rec_dp_mask[2] h_tm1_o = h_tm1 * rec_dp_mask[3] else: h_tm1_i = h_tm1 h_tm1_f = h_tm1 h_tm1_c = h_tm1 h_tm1_o = h_tm1 x_i = self.input_conv(inputs_i, self.kernel_i, self.bias_i, padding=self.padding) x_f = self.input_conv(inputs_f, self.kernel_f, self.bias_f, padding=self.padding) x_c = self.input_conv(inputs_c, self.kernel_c, self.bias_c, padding=self.padding) x_o = self.input_conv(inputs_o, self.kernel_o, self.bias_o, padding=self.padding) h_i = self.recurrent_conv(h_tm1_i, self.recurrent_kernel_i) h_f = self.recurrent_conv(h_tm1_f, self.recurrent_kernel_f) h_c = self.recurrent_conv(h_tm1_c, self.recurrent_kernel_c) h_o = self.recurrent_conv(h_tm1_o, self.recurrent_kernel_o) i = self.recurrent_activation(x_i + h_i) f = self.recurrent_activation(x_f + h_f) c = f * c_tm1 + i * self.activation(x_c + h_c) o = self.recurrent_activation(x_o + h_o) h = o * self.activation(c) if 0 < self.dropout + self.recurrent_dropout: if training is None: h._uses_learning_phase = True return h, [h, c]
def call(self, inputs, states, training=None): if 0 < self.dropout < 1 and self._dropout_mask is None: self._dropout_mask = _generate_dropout_mask(K.ones_like(inputs), self.dropout, training=training, count=4) if (0 < self.recurrent_dropout < 1 and self._recurrent_dropout_mask is None): self._recurrent_dropout_mask = _generate_dropout_mask( K.ones_like(states[1]), self.recurrent_dropout, training=training, count=4) # dropout matrices for input units dp_mask = self._dropout_mask # dropout matrices for recurrent units rec_dp_mask = self._recurrent_dropout_mask h_tm1 = states[0] # previous memory state c_tm1 = states[1] # previous carry state if 0 < self.dropout < 1.: inputs_i = inputs * dp_mask[0] inputs_f = inputs * dp_mask[1] inputs_c = inputs * dp_mask[2] inputs_o = inputs * dp_mask[3] else: inputs_i = inputs inputs_f = inputs inputs_c = inputs inputs_o = inputs if 0 < self.recurrent_dropout < 1.: h_tm1_i = h_tm1 * rec_dp_mask[0] h_tm1_f = h_tm1 * rec_dp_mask[1] h_tm1_c = h_tm1 * rec_dp_mask[2] h_tm1_o = h_tm1 * rec_dp_mask[3] else: h_tm1_i = h_tm1 h_tm1_f = h_tm1 h_tm1_c = h_tm1 h_tm1_o = h_tm1 x_i = self.input_conv(inputs_i, self.kernel_i, self.bias_i, padding=self.padding) x_f = self.input_conv(inputs_f, self.kernel_f, self.bias_f, padding=self.padding) x_c = self.input_conv(inputs_c, self.kernel_c, self.bias_c, padding=self.padding) x_o = self.input_conv(inputs_o, self.kernel_o, self.bias_o, padding=self.padding) h_i = self.recurrent_conv(h_tm1_i, self.recurrent_kernel_i) h_f = self.recurrent_conv(h_tm1_f, self.recurrent_kernel_f) h_c = self.recurrent_conv(h_tm1_c, self.recurrent_kernel_c) h_o = self.recurrent_conv(h_tm1_o, self.recurrent_kernel_o) i = self.recurrent_activation(x_i + h_i) f = self.recurrent_activation(x_f + h_f) c = f * c_tm1 + i * self.activation(x_c + h_c) o = self.recurrent_activation(x_o + h_o) h = o * self.activation(c) if 0 < self.dropout + self.recurrent_dropout: if training is None: h._uses_learning_phase = True return h, [h, c]