def get_config(self): config = {'filters': self.filters, 'kernel_size': self.kernel_size, 'strides': self.strides, 'padding': self.padding, 'data_format': self.data_format, 'dilation_rate': self.dilation_rate, 'activation': activations.serialize(self.activation), 'recurrent_activation': activations.serialize( self.recurrent_activation), 'use_bias': self.use_bias, 'kernel_initializer': initializers.serialize( self.kernel_initializer), 'recurrent_initializer': initializers.serialize( self.recurrent_initializer), 'bias_initializer': initializers.serialize(self.bias_initializer), 'unit_forget_bias': self.unit_forget_bias, 'kernel_regularizer': regularizers.serialize( self.kernel_regularizer), 'recurrent_regularizer': regularizers.serialize( self.recurrent_regularizer), 'bias_regularizer': regularizers.serialize(self.bias_regularizer), 'kernel_constraint': constraints.serialize( self.kernel_constraint), 'recurrent_constraint': constraints.serialize( self.recurrent_constraint), 'bias_constraint': constraints.serialize(self.bias_constraint), 'dropout': self.dropout, 'recurrent_dropout': self.recurrent_dropout} base_config = super(ConvLSTM2DCell, self).get_config() return dict(list(base_config.items()) + list(config.items()))
def get_config(self): config = { 'axis': self.axis, 'momentum': self.momentum, 'epsilon': self.epsilon, 'center': self.center, 'scale': self.scale, 'beta_initializer': initializers.serialize(self.beta_initializer), 'gamma_initializer': initializers.serialize(self.gamma_initializer), 'moving_mean_initializer': initializers.serialize(self.moving_mean_initializer), 'moving_variance_initializer': initializers.serialize(self.moving_variance_initializer), 'beta_regularizer': regularizers.serialize(self.beta_regularizer), 'gamma_regularizer': regularizers.serialize(self.gamma_regularizer), 'beta_constraint': constraints.serialize(self.beta_constraint), 'gamma_constraint': constraints.serialize(self.gamma_constraint) } # Only add TensorFlow-specific parameters if they are set, so as to preserve # model compatibility with external Keras. if self.renorm: config['renorm'] = True config['renorm_clipping'] = self.renorm_clipping config['renorm_momentum'] = self.renorm_momentum if self.virtual_batch_size is not None: config['virtual_batch_size'] = self.virtual_batch_size # Note: adjustment is not serializable. if self.adjustment is not None: logging.warning('The `adjustment` function of this `BatchNormalization` ' 'layer cannot be serialized and has been omitted from ' 'the layer config. It will not be included when ' 're-creating the layer from the saved config.') base_config = super(BatchNormalizationBase, self).get_config() return dict(list(base_config.items()) + list(config.items()))
def get_config(self): config = { 'filters': self.filters, 'kernel_size': self.kernel_size, 'strides': self.strides, 'padding': self.padding, 'data_format': self.data_format, 'activation': activations.serialize(self.activation), 'use_bias': self.use_bias, 'kernel_initializer': initializers.serialize(self.kernel_initializer), 'bias_initializer': initializers.serialize(self.bias_initializer), 'kernel_regularizer': regularizers.serialize(self.kernel_regularizer), 'bias_regularizer': regularizers.serialize(self.bias_regularizer), 'activity_regularizer': regularizers.serialize(self.activity_regularizer), 'kernel_constraint': constraints.serialize(self.kernel_constraint), 'bias_constraint': constraints.serialize(self.bias_constraint), 'implementation': self.implementation } base_config = super(LocallyConnected2D, self).get_config() return dict(list(base_config.items()) + list(config.items()))
def get_config(self): config = { 'axis': self.axis, 'epsilon': self.epsilon, 'center': self.center, 'scale': self.scale, 'beta_initializer': initializers.serialize(self.beta_initializer), 'gamma_initializer': initializers.serialize(self.gamma_initializer), 'beta_regularizer': regularizers.serialize(self.beta_regularizer), 'gamma_regularizer': regularizers.serialize(self.gamma_regularizer), 'beta_constraint': constraints.serialize(self.beta_constraint), 'gamma_constraint': constraints.serialize(self.gamma_constraint) } base_config = super(LayerNormalization, self).get_config() return dict(list(base_config.items()) + list(config.items()))
def get_config(self): config = { 'units': self.units, 'activation': activations.serialize(self.activation), 'use_bias': self.use_bias, 'kernel_initializer': initializers.serialize(self.kernel_initializer), 'bias_initializer': initializers.serialize(self.bias_initializer), 'kernel_regularizer': regularizers.serialize(self.kernel_regularizer), 'bias_regularizer': regularizers.serialize(self.bias_regularizer), 'activity_regularizer': regularizers.serialize(self.activity_regularizer), 'kernel_constraint': constraints.serialize(self.kernel_constraint), 'bias_constraint': constraints.serialize(self.bias_constraint) } base_config = super(Dense, self).get_config() return dict(list(base_config.items()) + list(config.items()))
def get_config(self): config = { 'alpha_initializer': initializers.serialize(self.alpha_initializer), 'alpha_regularizer': regularizers.serialize(self.alpha_regularizer), 'alpha_constraint': constraints.serialize(self.alpha_constraint), 'shared_axes': self.shared_axes } base_config = super(PReLU, self).get_config() return dict(list(base_config.items()) + list(config.items()))
def get_config(self): config = { 'units': self.units, 'kernel_initializer': initializers.serialize(self.kernel_initializer), 'recurrent_initializer': initializers.serialize(self.recurrent_initializer), 'bias_initializer': initializers.serialize(self.bias_initializer), 'kernel_regularizer': regularizers.serialize(self.kernel_regularizer), 'recurrent_regularizer': regularizers.serialize(self.recurrent_regularizer), 'bias_regularizer': regularizers.serialize(self.bias_regularizer), 'activity_regularizer': regularizers.serialize(self.activity_regularizer), 'kernel_constraint': constraints.serialize(self.kernel_constraint), 'recurrent_constraint': constraints.serialize(self.recurrent_constraint), 'bias_constraint': constraints.serialize(self.bias_constraint) } base_config = super(CuDNNGRU, self).get_config() return dict(list(base_config.items()) + list(config.items()))
def get_config(self): kernel_initializer = self.kernel_initializer if isinstance(self.kernel_initializer, init_ops.Initializer): kernel_initializer = initializers.serialize(self.kernel_initializer) config = { 'output_dim': self.output_dim, 'kernel_initializer': kernel_initializer, 'scale': self.scale, } base_config = super(RandomFourierFeatures, self).get_config() return dict(list(base_config.items()) + list(config.items()))
def get_config(self): config = { 'input_dim': self.input_dim, 'output_dim': self.output_dim, 'embeddings_initializer': initializers.serialize(self.embeddings_initializer), 'embeddings_regularizer': regularizers.serialize(self.embeddings_regularizer), 'activity_regularizer': regularizers.serialize(self.activity_regularizer), 'embeddings_constraint': constraints.serialize(self.embeddings_constraint), 'mask_zero': self.mask_zero, 'input_length': self.input_length } base_config = super(Embedding, self).get_config() return dict(list(base_config.items()) + list(config.items()))
def get_config(self): config = { 'units': self.units, 'activation': activations.serialize(self.activation), # 'use_bias': self.use_bias, 'kernel_initializer': initializers.serialize(self.kernel_initializer) # 'bias_initializer': initializers.serialize(self.bias_initializer), # 'kernel_regularizer': regularizers.serialize(self.kernel_regularizer), # 'bias_regularizer': regularizers.serialize(self.bias_regularizer), # 'activity_regularizer': # regularizers.serialize(self.activity_regularizer), # 'kernel_constraint': constraints.serialize(self.kernel_constraint), # 'bias_constraint': constraints.serialize(self.bias_constraint) } base_config = super(RWNN, self).get_config() return dict(list(base_config.items()) + list(config.items()))
def get_config(self): config = { "num_units": self._num_units, "use_peepholes": self._use_peepholes, "cell_clip": self._cell_clip, "initializer": initializers.serialize(self._initializer), "num_proj": self._num_proj, "proj_clip": self._proj_clip, "num_unit_shards": self._num_unit_shards, "num_proj_shards": self._num_proj_shards, "forget_bias": self._forget_bias, "state_is_tuple": self._state_is_tuple, "activation": activations.serialize(self._activation), "reuse": self._reuse, } base_config = super(TFLiteLSTMCell, self).get_config() return dict(list(base_config.items()) + list(config.items()))
def get_config(self): base_config = super(MultiHeadAttention, self).get_config() base_config.update({ 'output_dim': self.output_dim, 'num_heads': self.num_heads, 'negative_infinity': self.negative_infinity, 'padding_value': self.padding_value, 'kernel_initializer': initializers.serialize(self.kernel_initializer), 'kernel_regularizer': regularizers.serialize(self.kernel_regularizer), 'kernel_constraint': constraints.serialize(self.kernel_constraint), }) return base_config
def get_config(self): # TODO this function is copied from Keras.Layers.Dense, and probably needs some further changes for TSRNNDense...? config = { 'units': self.units, 'activation': activations.serialize(self.activation), 'use_bias': self.use_bias, 'kernel_initializer': initializers.serialize(self.kernel_initializer), 'kernel_regularizer': regularizers.serialize(self.kernel_regularizer), 'activity_regularizer': regularizers.serialize(self.activity_regularizer), 'kernel_constraint': constraints.serialize(self.kernel_constraint), } base_config = super(TSDense, self).get_config() return dict(list(base_config.items()) + list(config.items()))
def get_config(self): config = { 'tied_layer': '', 'activation': activations.serialize(self.activation), 'use_bias': self.use_bias, 'bias_initializer': initializers.serialize(self.bias_initializer), 'bias_regularizer': regularizers.serialize(self.bias_regularizer), 'activity_regularizer': regularizers.serialize(self.activity_regularizer), 'bias_constraint': constraints.serialize(self.bias_constraint), 'varName': self.varName, 'varShape': self.varShape } base_config = super(DenseTied, self).get_config() return dict(list(base_config.items()) + list(config.items()))
def test_get_config(self, output_dim, initializer, scale, trainable): rff_layer = kernel_layers.RandomFourierFeatures( output_dim, initializer, scale=scale, trainable=trainable, name='random_fourier_features', ) expected_initializer = initializer if isinstance(initializer, init_ops.Initializer): expected_initializer = initializers.serialize(initializer) expected_config = { 'output_dim': output_dim, 'kernel_initializer': expected_initializer, 'scale': scale, 'name': 'random_fourier_features', 'trainable': trainable, 'dtype': None, } self.assertLen(expected_config, len(rff_layer.get_config())) self.assertSameElements( list(expected_config.items()), list(rff_layer.get_config().items()))
def get_config(self): config = { 'activation': activations.serialize(self.activation), 'use_bias': self.use_bias, 'kernel_initializer': self.kernel_initializer, 'bias_initializer': initializers.serialize(self.bias_initializer), 'kernel_regularizer': self.kernel_regularizer, 'bias_regularizer': regularizers.serialize(self.bias_regularizer), 'activity_regularizer': regularizers.serialize(self.activity_regularizer), 'kernel_constraint': self.kernel_constraint, 'bias_constraint': constraints.serialize(self.bias_constraint) } base_config = super(_MultiTimeDelayLayer, self).get_config() return dict(list(base_config.items()) + list(config.items()))
def test_get_config(self, output_dim, initializer, scale, trainable): rff_layer = kernel_layers.RandomFourierFeatures( output_dim, initializer, scale=scale, trainable=trainable, name='random_fourier_features', ) expected_initializer = initializer if isinstance(initializer, init_ops.Initializer): expected_initializer = initializers.serialize(initializer) expected_config = { 'output_dim': output_dim, 'kernel_initializer': expected_initializer, 'scale': scale, 'name': 'random_fourier_features', 'trainable': trainable, 'dtype': None, } self.assertLen(expected_config, len(rff_layer.get_config())) self.assertSameElements(list(expected_config.items()), list(rff_layer.get_config().items()))
def get_config(self): config = { 'axis': self.axis, 'epsilon': self.epsilon, 'momentum': self.momentum, 'center': self.center, 'scale': self.scale, 'beta_initializer': initializers.serialize(self.beta_initializer), 'gamma_initializer': initializers.serialize(self.gamma_initializer), 'mean_weights_initializer': initializers.serialize(self.mean_weights_initializer), 'variance_weights_initializer': initializers.serialize(self.variance_weights_initializer), 'moving_mean_initializer': initializers.serialize(self.moving_mean_initializer), 'moving_variance_initializer': initializers.serialize(self.moving_variance_initializer), 'beta_regularizer': regularizers.serialize(self.beta_regularizer), 'gamma_regularizer': regularizers.serialize(self.gamma_regularizer), 'mean_weights_regularizer': regularizers.serialize(self.mean_weights_regularizer), 'variance_weights_regularizer': regularizers.serialize(self.variance_weights_regularizer), 'beta_constraint': constraints.serialize(self.beta_constraint), 'gamma_constraint': constraints.serialize(self.gamma_constraint), 'mean_weights_constraints': constraints.serialize(self.mean_weights_constraints), 'variance_weights_constraints': constraints.serialize(self.variance_weights_constraints), } base_config = super(SwitchNormalization, self).get_config() return dict(list(base_config.items()) + list(config.items()))
def get_config(self): config = { 'initializer': initializers.serialize(self.initializer), } base_config = super(Gate, self).get_config() return dict(list(base_config.items()) + list(config.items()))
def get_config(self): config = { 'units': self.units, 'prior_memory_slots': self.prior_memory_slots, 'posterior_memory_slots': self.posterior_memory_slots, 'num_attention_heads': self.num_attention_heads, 'activation': wrap_activations_serialize(self.activation), 'recurrent_activation': wrap_activations_serialize(self.recurrent_activation), 'mlp_activation': wrap_activations_serialize(self.mlp_activation), 'forget_bias': self.forget_bias, 'input_bias': self.input_bias, 'sigma_bias': self.sigma_bias, 'kernel_initializer': initializers.serialize(self.kernel_initializer), 'recurrent_initializer': initializers.serialize(self.recurrent_initializer), 'attention_initializer': initializers.serialize(self.attention_initializer), 'mlp_initializer': initializers.serialize(self.mlp_initializer), 'bias_initializer': initializers.serialize(self.bias_initializer), 'kernel_regularizer': regularizers.serialize(self.kernel_regularizer), 'recurrent_regularizer': regularizers.serialize(self.recurrent_regularizer), 'attention_regularizer': regularizers.serialize(self.attention_regularizer), 'mlp_regularizer': regularizers.serialize(self.mlp_regularizer), 'activity_regularizer': regularizers.serialize(self.activity_regularizer), 'bias_regularizer': regularizers.serialize(self.bias_regularizer), 'kernel_constraint': constraints.serialize(self.kernel_constraint), 'recurrent_constraint': constraints.serialize(self.recurrent_constraint), 'attention_constraint': constraints.serialize(self.attention_constraint), 'mlp_constraint': constraints.serialize(self.mlp_constraint), 'bias_constraint': constraints.serialize(self.bias_constraint), 'dropout': self.dropout, 'recurrent_dropout': self.recurrent_dropout } base_config = super(TmpHierRNN, self).get_config() del base_config['cell'] return dict(list(base_config.items()) + list(config.items()))
def get_config(self): config = { 'sub_units': self.sub_units, 'sub_lstms': self.sub_lstms, 'sub_activation': activations.serialize(self.sub_activation), 'cake_activation': activations.serialize(self.cake_activation), 'sub_use_bias': self.sub_use_bias, 'cake_use_bias': self.cake_use_bias, 'sub_kernel_initializer': initializers.serialize(self.sub_kernel_initializer), 'cake_kernel_initializer': initializers.serialize(self.cake_kernel_initializer), 'sub_recurrent_initializer': initializers.serialize(self.sub_recurrent_initializer), 'cake_recurrent_initializer': initializers.serialize(self.cake_recurrent_initializer), 'sub_bias_initializer': initializers.serialize(self.sub_bias_initializer), 'cake_bias_initializer': initializers.serialize(self.cake_bias_initializer), 'sub_unit_forget_bias': self.sub_unit_forget_bias, 'cake_unit_forget_bias': self.cake_unit_forget_bias, 'sub_kernel_regularizer': regularizers.serialize(self.sub_kernel_regularizer), 'cake_kernel_regularizer': regularizers.serialize(self.cake_kernel_regularizer), 'sub_recurrent_regularizer': regularizers.serialize(self.sub_recurrent_regularizer), 'cake_recurrent_regularizer': regularizers.serialize(self.cake_recurrent_regularizer), 'sub_bias_regularizer': regularizers.serialize(self.sub_bias_regularizer), 'cake_bias_regularizer': regularizers.serialize(self.cake_bias_regularizer), 'activity_regularizer': regularizers.serialize(self.activity_regularizer), 'sub_kernel_constraint': constraints.serialize(self.sub_kernel_constraint), 'cake_kernel_constraint': constraints.serialize(self.cake_kernel_constraint), 'sub_recurrent_constraint': constraints.serialize(self.sub_recurrent_constraint), 'cake_recurrent_constraint': constraints.serialize(self.cake_recurrent_constraint), 'sub_bias_constraint': constraints.serialize(self.sub_bias_constraint), 'cake_bias_constraint': constraints.serialize(self.cake_bias_constraint), 'sub_dropout': self.sub_dropout, 'cake_dropout': self.cake_dropout, 'sub_recurrent_dropout': self.sub_recurrent_dropout, 'cake_recurrent_dropout': self.cake_recurrent_dropout, 'implementation': self.implementation } base_config = super(JujubeCake, self).get_config() del base_config['cell'] return dict(list(base_config.items()) + list(config.items()))
def get_config(self): config = { 'units': self.units, 'projection_units': self.projection_units, 'use_feedback': self.use_feedback, 'use_recurrent': self.use_recurrent, 'activation': activations.serialize(self.activation), 'projection_activation': activations.serialize(self.projection_activation), 'use_bias': self.use_bias, 'use_projection_bias': self.use_projection_bias, 'kernel_initializer': initializers.serialize(self.kernel_initializer), 'projection_initializer': initializers.serialize(self.projection_initializer), 'recurrent_initializer': initializers.serialize(self.recurrent_initializer), 'recurrent_initializer': initializers.serialize(self.feedback_initializer), 'bias_initializer': initializers.serialize(self.bias_initializer), 'bias_initializer': initializers.serialize(self.projection_bias_initializer), 'kernel_regularizer': regularizers.serialize(self.kernel_regularizer), 'projection_regularizer': regularizers.serialize(self.projection_regularizer), 'recurrent_regularizer': regularizers.serialize(self.recurrent_regularizer), 'feedback_regularizer': regularizers.serialize(self.feedback_regularizer), 'bias_regularizer': regularizers.serialize(self.bias_regularizer), 'projection_bias_regularizer': regularizers.serialize(self.projection_bias_regularizer), 'kernel_constraint': constraints.serialize(self.kernel_constraint), 'projection_constraint': constraints.serialize(self.projection_constraint), 'recurrent_constraint': constraints.serialize(self.recurrent_constraint), 'feedback_constraint': constraints.serialize(self.feedback_constraint), 'bias_constraint': constraints.serialize(self.bias_constraint), 'projection_bias_constraint': constraints.serialize(self.projection_bias_constraint), 'dropout': self.dropout, 'recurrent_dropout': self.recurrent_dropout } base_config = super(Cell, self).get_config() return dict(list(base_config.items()) + list(config.items()))