Example #1
0
 def load_models(self):
     # load json and create model
     if self.Use_Batch_Norm:
         out_mod_dir = 'Save_BatchNorm'
     else:
         out_mod_dir = 'Save_InstNorm'
     ae_json = open(os.path.join(out_mod_dir, 'autoencoder.json'), 'r')
     ae_model_json = ae_json.read()
     ae_json.close()
     ae_model = models.model_from_json(
         ae_model_json,
         custom_objects={'InstanceNormalization': InstanceNormalization})
     # load weights into new model
     ae_model.load_weights(os.path.join(out_mod_dir, "autoencoder.h5"))
     self.AutoEncoderNet = ae_model
     for i in self.style_bank:
         ae_json = open(
             os.path.join(out_mod_dir, "stylenet_{}.json".format(i)), 'r')
         ae_model_json = ae_json.read()
         ae_json.close()
         ae_model = models.model_from_json(ae_model_json,
                                           custom_objects={
                                               'InstanceNormalization':
                                               InstanceNormalization
                                           })
         # load weights into new model
         ae_model.load_weights(
             os.path.join(out_mod_dir, "stylenet_{}.h5".format(i)))
         self.StyleNet[i] = ae_model
     print("Loaded models from disk")
Example #2
0
    def test_unseen_class(self):
        loaded_model = None
        adam = Adam(lr=1e-5)

        with open(self.model_dir.joinpath('model.json'), 'r') as json_file:
            loaded_model_json = json_file.read()
            loaded_model = model_from_json(loaded_model_json)

        loaded_model.load_weights(
            str(self.model_dir.joinpath(self.prefix + "model.h5")))
        print("Loaded model from disk")
        loaded_model.compile(loss='sparse_categorical_crossentropy',
                             optimizer=adam,
                             metrics=['accuracy'])
        probs = list()

        for i in range(len(self.test_labels)):
            pred = loaded_model.predict(np.array([
                self.test_images[i],
            ]))
            print("{}: {}: max: {}".format(i, pred[0], np.max(pred[0])))
            probs.append(np.max(pred[0]))

        plt.xlabel("DATA")
        plt.ylabel("PROBABLILITY")
        plt.title("mean: {}".format(np.mean(probs)))
        plt.scatter(np.arange(len(probs)), probs, s=100)
        plt.show()
Example #3
0
def load_trained_tf_model(
    model_save_dir,
    model_name,
    use_best_val_loss=False,
    print_model_summary=True,
):
    """
    Load the model architecture and weights.

    Parameters
    ---------
    model_save_dir : str
        The path to where the .json model architecture and .h5 model weights
        are stored.
    model_name : str
        The name the model is saved under, i.e., the part before '.h5' or
        '.json'.
    use_best_val_loss : bool
    print_model_summary : bool
    """
    with open(f"{model_save_dir}{model_name}.json", "r") as f:
        model = model_from_json(f.read(), custom_objects={"k": K})
    if use_best_val_loss:
        model_name += "_best_val_loss"
    model.load_weights(model_save_dir + model_name + ".h5")
    if print_model_summary:
        print(model.summary())
    return model
Example #4
0
 def load_model(self, model_json_path, model_h5_path):
     json_file = open(model_json_path, 'r')
     loaded_model_json = json_file.read()
     json_file.close()
     loaded_model = model_from_json(loaded_model_json)
     loaded_model.load_weights(model_h5_path)
     return loaded_model
Example #5
0
def load_keras_model(saved_model_path):
    """Load a keras.Model from SavedModel.

  load_model reinstantiates model state by:
  1) loading model topology from json (this will eventually come
     from metagraph).
  2) loading model weights from checkpoint.

  Args:
    saved_model_path: a string specifying the path to an existing SavedModel.

  Returns:
    a keras.Model instance.
  """
    # restore model topology from json string
    model_json_filepath = os.path.join(
        compat.as_bytes(saved_model_path),
        compat.as_bytes(constants.ASSETS_DIRECTORY),
        compat.as_bytes(constants.SAVED_MODEL_FILENAME_JSON))
    model_json = file_io.read_file_to_string(model_json_filepath)
    model = model_from_json(model_json)

    # restore model weights
    checkpoint_prefix = os.path.join(
        compat.as_text(saved_model_path),
        compat.as_text(constants.VARIABLES_DIRECTORY),
        compat.as_text(constants.VARIABLES_FILENAME))
    model.load_weights(checkpoint_prefix)
    return model
Example #6
0
def load_regressor(filename, newobj):
    dataset = []
    with open(filename, 'r') as f:
        for line in f:
            jsonfile = json.loads(line[:-2])
            dataset.append(jsonfile)
    f.close()

    cars = pd.DataFrame(dataset)
    cars = cars.drop(cars[(cars['price'] > 30000)
                          & (cars['price'] < 300000)].index)
    cars_prices = cars["price"].copy()
    cars = cars.drop("price", axis=1)

    new_car = pd.DataFrame(newobj)

    cars = cars.append(new_car)

    cars_prepared = full_pipeline.fit_transform(cars)

    json_file = open('neuralnetregressor.json', 'r')
    loaded_model_json = json_file.read()
    json_file.close()
    loaded_model = model_from_json(loaded_model_json)
    loaded_model.load_weights("neuralnetregressor.h5")
    loaded_model.compile(loss='mean_absolute_error',
                         optimizer='adam',
                         metrics=['mae'])

    daaa = np.array(cars_prepared[-1, :11])
    #loaded_model.predict(cars_prepared)
    return loaded_model.predict(cars_prepared[-1].reshape((1, -1)))
Example #7
0
def scorer(filename=None):
    json_file = open('input/model2_json.json', 'r')
    loaded_model_json = json_file.read()
    json_file.close()

    tf.disable_v2_behavior()
    loaded_model = model_from_json(loaded_model_json)

    # load weights into new model
    loaded_model.load_weights("input/VoiceModel2.h5")
    print("Loaded model from disk")

    # the optimiser
    loaded_model.compile(loss='categorical_crossentropy',
                         optimizer='adam',
                         metrics=['accuracy'])

    audio_file_name = 'input/' + filename  # + '3.wav'

    X = prepare_data(audio_file_name,
                     aug=1,
                     mfcc=1,
                     sampling_rate=44100,
                     audio_duration=2.5)

    newpred = loaded_model.predict(X, batch_size=16, verbose=1)

    return str(score(newpred))
Example #8
0
    def train(self, train_images, train_labels, validation_images, validation_labels,
              retrain=False, prefix="", lr=1e-4, epochs=20):

        mc = ModelCheckpoint(str(INCEPTION_V4_DIR_RES.joinpath(prefix+'model.h5')), monitor='val_acc',
                             mode='auto', verbose=1, save_best_only=True)

        model = None
        adam = Adam(lr=lr)

        if not retrain:
            model = self.model()
            model_json = model.to_json()
            with open(INCEPTION_V4_DIR_RES.joinpath('model.json'), "w") as json_file:
                json_file.write(model_json)
            print("Saved model to disk")
        else:
            print('retraining...')
            with open(INCEPTION_V4_DIR_RES.joinpath('model.json'), 'r') as json_file:
                loaded_model_json = json_file.read()
                model = model_from_json(loaded_model_json)
            # load weights into new model
            model.load_weights(str(INCEPTION_V4_DIR_RES.joinpath(prefix+"model.h5")))
            print("Loaded model from disk")

        model.compile(optimizer=adam, loss='sparse_categorical_crossentropy',
                      metrics=['accuracy'])

        # model.summary()
        # plot_model(model, show_shapes=True, to_file=INCEPTION_V4_DIR_RES.joinpath('resnet34.png'))

        history = model.fit(train_images, train_labels, epochs=epochs,
                  validation_data=(validation_images, validation_labels),
                            callbacks=[mc], verbose=2)

        return history
Example #9
0
 def loadRNN(model_file_name, weight_file_name):
     K.reset_uids()
     with open(model_file_name + '.json', 'r') as f:
         model = model_from_json(f.read())
     model.load_weights(weight_file_name + '.h5')
     print("Red Neuronal Cargada desde Archivo")
     return model
 def __init__(self):
     json_file = open('../../resources/model.json', 'r')
     loaded_model_json = json_file.read()
     json_file.close()
     self.intent_classifier = model_from_json(loaded_model_json)
     self.intent_classifier.load_weights('../../resources/model.h5')
     print("Loaded model from disk")
def load_model(saved_model_path):
  """Load a keras.Model from SavedModel.

  load_model reinstantiates model state by:
  1) loading model topology from json (this will eventually come
     from metagraph).
  2) loading model weights from checkpoint.

  Args:
    saved_model_path: a string specifying the path to an existing SavedModel.

  Returns:
    a keras.Model instance.
  """
  # restore model topology from json string
  model_json_filepath = os.path.join(
      compat.as_bytes(saved_model_path),
      compat.as_bytes(constants.ASSETS_DIRECTORY),
      compat.as_bytes(constants.SAVED_MODEL_FILENAME_JSON))
  model_json = file_io.read_file_to_string(model_json_filepath)
  model = model_from_json(model_json)

  # restore model weights
  checkpoint_prefix = os.path.join(
      compat.as_text(saved_model_path),
      compat.as_text(constants.VARIABLES_DIRECTORY),
      compat.as_text(constants.VARIABLES_FILENAME))
  model.load_weights(checkpoint_prefix)
  return model
    def predict(self):

        K.reset_uids()

        classes = ['Normal', 'Neumonia']

        modelo = 'neumonia/model/model_neumonia_v41.json'
        pesos = 'neumonia/model/weights_neumonia_v41.h5'

        with CustomObjectScope({'GlorotUniform': glorot_uniform()}):
            with open(modelo, 'r') as f:
                model = model_from_json(f.read())
                model.load_weights(pesos)

        img = image.load_img(self.img, target_size=(150, 150))
        x = image.img_to_array(img)
        x = np.expand_dims(x, axis=0)
        x = preprocess_input(x)
        preds = model.predict(x)
        resultado = preds[0]  #solo una dimension

        porcentaje = np.round(resultado * 100, 2)
        porcentaje = list(porcentaje)

        respuesta = np.argmax(resultado)  # el valor mas alto de resultado

        for i in range(len(classes)):
            res = classes[i]

            if i == respuesta:
                return 'Resultado: {:.4}% {}'.format(round(max(porcentaje), 2),
                                                     res)
Example #13
0
    def load(self, file_name=None):
        with self.graph.as_default():
            with self.session.as_default():
                try:
                    model_name = file_name[0]
                    weights_name = file_name[1]

                    if model_name is not None:
                        # load the model
                        json_file_path = os.path.join(self.model_folder,
                                                      model_name)
                        json_file = open(json_file_path, 'r')
                        loaded_model_json = json_file.read()
                        json_file.close()
                        self.loaded_model = model_from_json(loaded_model_json)
                    if weights_name is not None:
                        # load the weights
                        weights_path = os.path.join(self.model_folder,
                                                    weights_name)
                        self.loaded_model.load_weights(weights_path)
                        logging.info("Neural Network loaded: ")
                        logging.info('\t' + "Neural Network model: " +
                                     model_name)
                        logging.info('\t' + "Neural Network weights: " +
                                     weights_name)
                        return True
                except Exception as e:
                    logging.exception(e)
                    return False
Example #14
0
def load_model():
    loaded_model = model_from_json(loaded_model_json)
    loaded_model.load_weights(model_weights_file_path)
    loaded_model.compile(loss='binary_crossentropy',
                         optimizer=Adam(lr=1e-5),
                         metrics=['accuracy'])
    loaded_model._make_predict_function()
    return loaded_model
    def load_models(self, model_architecture_file, model_weights_file):

        json_file = open(model_architecture_file, 'r')
        loaded_model_json = json_file.read()
        json_file.close()
        self.neural_network = model_from_json(loaded_model_json)
        self.neural_network.load_weights(model_weights_file)
        print("Loaded model {} {}".format(model_architecture_file, model_weights_file))
Example #16
0
    def cargarRNN(archivoModelo,archivoPesos):
        K.reset_uids
        with open(archivoModelo+'.json','r') as f:
            model = model_from_json(f.read())

        model.load_weights(archivoPesos+'.h5')
        print("Red Neuronal Cargada")
        return model
Example #17
0
def load_trained_model(name):
    json_file = open('model.json', 'r')
    loaded_model_json = json_file.read()
    json_file.close()
    loaded_model = model_from_json(loaded_model_json)
    loaded_model.load_weights(name)
    print("Model loaded...")
    return loaded_model
Example #18
0
 def load_model_from_json(self, json_file_name):
     # load json and create model
     json_file = open(json_file_name, 'r')
     loaded_model_json = json_file.read()
     json_file.close()
     loaded_model = model_from_json(loaded_model_json)
     loaded_model.summary()
     return loaded_model
Example #19
0
 def model_init(self):
     """模型初始化"""
     path_graph = os.path.join(self.path_dir, "graph.json")
     path_model = os.path.join(self.path_dir, "model.h5")
     # 加载模型结构
     self.model = model_from_json(open(path_graph, "r", encoding="utf-8").read(),
                                  custom_objects=macropodus.custom_objects)
     # 加载模型权重
     self.model.load_weights(path_model)
Example #20
0
def load_model(arch):
    model_path = 'models/' + arch['name'] + '.json'
    weights_path = 'models/' + arch['name'] + '.h5'
    json_file = open(model_path)
    loaded_model_json = json_file.read()
    json_file.close()
    loaded_model = model_from_json(loaded_model_json)
    loaded_model.load_weights(weights_path)
    return loaded_model
def load_model(input_model_path, input_json_path=None, input_yaml_path=None):
    if not Path(input_model_path).exists():
        raise FileNotFoundError(
            'Model file `{}` does not exist.'.format(input_model_path))
    try:
        model = keras.models.load_model(input_model_path)
        if FLAGS.is_tiny:
            model = tiny_yolo_body(Input(shape=(None, None, 3)), 3,
                                   FLAGS.num_class)
        else:
            model = yolo_body(Input(shape=(None, None, 3)), 3, FLAGS.num_class)

        model.load_weights('input_model_path')
        return model
    except FileNotFoundError as err:
        logging.error('Input mode file (%s) does not exist.',
                      FLAGS.input_model)
        raise err
    except ValueError as wrong_file_err:
        if input_json_path:
            if not Path(input_json_path).exists():
                raise FileNotFoundError(
                    'Model description json file `{}` does not exist.'.format(
                        input_json_path))
            try:
                model = model_from_json(open(str(input_json_path)).read())
                model.load_weights(input_model_path)
                return model
            except Exception as err:
                logging.error("Couldn't load model from json.")
                raise err
        elif input_yaml_path:
            if not Path(input_yaml_path).exists():
                raise FileNotFoundError(
                    'Model description yaml file `{}` does not exist.'.format(
                        input_yaml_path))
            try:
                model = model_from_yaml(open(str(input_yaml_path)).read())
                model.load_weights(input_model_path)
                return model
            except Exception as err:
                logging.error("Couldn't load model from yaml.")
                raise err
        else:
            logging.error(
                'Input file specified only holds the weights, and not '
                'the model definition. Save the model using '
                'model.save(filename.h5) which will contain the network '
                'architecture as well as its weights. '
                'If the model is saved using the '
                'model.save_weights(filename) function, either '
                'input_model_json or input_model_yaml flags should be set to '
                'to import the network architecture prior to loading the '
                'weights. \n'
                'Check the keras documentation for more details '
                '(https://keras.io/getting-started/faq/)')
            raise wrong_file_err
Example #22
0
 def load(self):
     inside = os.listdir(MODEL_DIR)
     if "model.json" not in inside or "model.h5" not in inside:
         raise ValueError(
             "Make sure both model.json and model.h5 are inside \'models/\'"
         )
     with open(MODEL_DIR + "model.json", "w") as json_file:
         self.model = model_from_json(json_file.read())
     self.model.load_weights(MODEL_DIR + "model.h5")
Example #23
0
 def cargarRNN(nombreArchivoModelo, nombreArchivoPesos):
     K.reset_uids()
     # Cargar la Arquitectura desde el archivo JSON
     with open(nombreArchivoModelo + '.json', 'r') as f:
         model = model_from_json(f.read())
     # Cargar Pesos (weights) en el nuevo modelo
     model.load_weights(nombreArchivoPesos + '.h5')
     print("Red Neuronal Cargada desde Archivo")
     return model
Example #24
0
 def __init__(self,model=None):
     if model:
         self.model=model
     else:
         #from tensorflow.python.keras.models import model_from_json
         jfile = open(Recognizer.path_model, "r")
         loaded_model = jfile.read()
         jfile.close()
         self.model = model_from_json(loaded_model)
         self.model.load_weights(Recognizer.weights_path)
     self.threshold=0.93
     jfile = open(Recognizer.path_model2, "r")
     loaded_model = jfile.read()
     jfile.close()
     self.model2 = model_from_json(loaded_model)
     self.model2.load_weights(Recognizer.weights_path2)
     self.__labels={0:'speech', 1:'silence'}
     self.__labels2={0: '0', 1: '1', 2: '10', 3: '2', 4: '3', 5: '4', 6: '5', 7: '6', 8: '7', 9: '8', 10: '9', 11: 'no', 12: 'other', 13: 'yes'}
Example #25
0
def load_model():

    # Model reconstruction from JSON file
    with open('model_architecture.json', 'r') as f:
        model = models.model_from_json(f.read())

    # Load weights into the new model
    model.load_weights('model_weights.h5')

    return model
Example #26
0
 def load_model(self, name):
     # load json and create model
     json_file = open(name + 'model.json', 'r')
     loaded_model_json = json_file.read()
     json_file.close()
     loaded_model = model_from_json(loaded_model_json)
     # load weights into new model
     loaded_model.load_weights(name + "model.h5")
     print("Loaded model from disk")
     return loaded_model
Example #27
0
def get_model():
    json_file = open(path + name + ".json", 'r')
    loaded_model_json = json_file.read()
    json_file.close()
    loaded_model = model_from_json(loaded_model_json)

    # load weights into new model
    loaded_model.load_weights(path + name + ".h5")
    print("Loaded model from disk")
    return loaded_model
Example #28
0
def load_model(weight_path: str, structure_path: str, trainset_path: str):
    # load structure of model
    json_file = open(structure_path, 'r')
    loaded_model_json = json_file.read()
    json_file.close()
    model = model_from_json(loaded_model_json)

    # Load weight from file
    model.load_weights(weight_path)
    return model
Example #29
0
def readModelFromJSON():
    json_file = open('model.json', 'r')
    loaded_model_json = json_file.read()
    json_file.close()
    loaded_model = model_from_json(loaded_model_json)

    # load weights into new model
    loaded_model.load_weights("model.h5")
    print("Model is readed.")
    return loaded_model
def load_model(name):
    # load json and create model
    model_file = open('{}.json'.format(name), 'r')
    loaded_model_json = model_file.read()
    model_file.close()
    loaded_model = model_from_json(loaded_model_json)
    # load weights into new model
    loaded_model.load_weights("{}.h5".format(name))
    print("Loaded model from disk")
    return loaded_model
 def __init__(self):
     # Load pre-processing
     self.MAX_TWEET_LENGTH = 100
     self.MIN_PREDICTION_SCORE = 0.95
     self.tokenizer = load('src/save/tokenizer.joblib')
     self.label_encoder = load('src/save/label_encoder.joblib')
     # load model
     with open('src/save/model.json', 'r') as f:
         self.model = model_from_json(f.read())
     self.model.load_weights('src/save/model.h5')
     self.model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])
Example #32
0
def load_keras_model(saved_model_path):
  """Load a keras.Model from SavedModel.

  load_model reinstantiates model state by:
  1) loading model topology from json (this will eventually come
     from metagraph).
  2) loading model weights from checkpoint.

  Example:

  ```python
  import tensorflow as tf

  # Create a tf.keras model.
  model = tf.keras.Sequential()
  model.add(tf.keras.layers.Dense(1, input_shape=[10]))
  model.summary()

  # Save the tf.keras model in the SavedModel format.
  saved_to_path = tf.contrib.saved_model.save_keras_model(
        model, '/tmp/my_simple_tf_keras_saved_model')

  # Load the saved keras model back.
  model_prime = tf.contrib.saved_model.load_keras_model(saved_to_path)
  model_prime.summary()
  ```

  Args:
    saved_model_path: a string specifying the path to an existing SavedModel.

  Returns:
    a keras.Model instance.
  """
  # restore model topology from json string
  model_json_filepath = os.path.join(
      compat.as_bytes(saved_model_path),
      compat.as_bytes(constants.ASSETS_DIRECTORY),
      compat.as_bytes(constants.SAVED_MODEL_FILENAME_JSON))
  model_json = file_io.read_file_to_string(model_json_filepath)
  model = model_from_json(model_json)

  # restore model weights
  checkpoint_prefix = os.path.join(
      compat.as_text(saved_model_path),
      compat.as_text(constants.VARIABLES_DIRECTORY),
      compat.as_text(constants.VARIABLES_FILENAME))
  model.load_weights(checkpoint_prefix)
  return model