def test_saving_subclassed_model_raise_error(self):
        # For now, saving subclassed model should raise an error. It should be
        # avoided later with loading from SavedModel.pb.

        class SubclassedModel(training.Model):
            def __init__(self):
                super(SubclassedModel, self).__init__()
                self.layer1 = keras.layers.Dense(3)
                self.layer2 = keras.layers.Dense(1)

            def call(self, inp):
                return self.layer2(self.layer1(inp))

        model = SubclassedModel()

        temp_saved_model = self._save_model_dir()
        with self.assertRaises(NotImplementedError):
            keras_saved_model.export(model, temp_saved_model)
    def test_saving_with_tf_optimizer(self):
        with self.cached_session():
            model = keras.models.Sequential()
            model.add(keras.layers.Dense(2, input_shape=(3, )))
            model.add(keras.layers.Dense(3))
            model.compile(loss='mse',
                          optimizer=training_module.RMSPropOptimizer(0.1),
                          metrics=['acc'])

            x = np.random.random((1, 3))
            y = np.random.random((1, 3))
            model.train_on_batch(x, y)
            ref_y = model.predict(x)

            temp_saved_model = self._save_model_dir()
            output_path = keras_saved_model.export(model, temp_saved_model)
            loaded_model = keras_saved_model.load_from_saved_model(output_path)
            loaded_model.compile(
                loss='mse',
                optimizer=training_module.RMSPropOptimizer(0.1),
                metrics=['acc'])
            y = loaded_model.predict(x)
            self.assertAllClose(ref_y, y, atol=1e-05)

            # test that new updates are the same with both models
            x = np.random.random((1, 3))
            y = np.random.random((1, 3))

            ref_loss = model.train_on_batch(x, y)
            loss = loaded_model.train_on_batch(x, y)
            self.assertAllClose(ref_loss, loss, atol=1e-05)

            ref_y = model.predict(x)
            y = loaded_model.predict(x)
            self.assertAllClose(ref_y, y, atol=1e-05)

            # test saving/loading again
            temp_saved_model2 = self._save_model_dir('saved_model_2')
            output_path2 = keras_saved_model.export(loaded_model,
                                                    temp_saved_model2)
            loaded_model = keras_saved_model.load_from_saved_model(
                output_path2)
            y = loaded_model.predict(x)
            self.assertAllClose(ref_y, y, atol=1e-05)
    def testSaveSequentialModelWithoutInputShapes(self):
        model = sequential_model_without_input_shape(True)
        # A Sequential model that hasn't been built should raise an error.
        with self.assertRaisesRegexp(ValueError, 'Please build the model'):
            keras_saved_model.export(model, '')

        saved_model_path = self._save_model_dir()
        output_path = keras_saved_model.export(
            model,
            saved_model_path,
            input_signature=tensor_spec.TensorSpec(shape=(10, 11, 12, 13, 14),
                                                   dtype=dtypes.float32,
                                                   name='spec_input'))

        with session.Session(graph=ops.Graph()) as sess:
            inputs, outputs, _ = load_model(sess, output_path,
                                            mode_keys.ModeKeys.PREDICT)
            self.assertEqual(5, inputs[next(iter(inputs.keys()))].shape.ndims)
            self.assertEqual(5,
                             outputs[next(iter(outputs.keys()))].shape.ndims)
            self.assertEqual(3, outputs[next(iter(outputs.keys()))].shape[-1])
    def test_saving_sequential_model_without_compile(self):
        with self.cached_session():
            model = keras.models.Sequential()
            model.add(keras.layers.Dense(2, input_shape=(3, )))
            model.add(keras.layers.RepeatVector(3))
            model.add(keras.layers.TimeDistributed(keras.layers.Dense(3)))

            x = np.random.random((1, 3))
            ref_y = model.predict(x)

            temp_saved_model = self._save_model_dir()
            output_path = keras_saved_model.export(model, temp_saved_model)
            loaded_model = keras_saved_model.load_from_saved_model(output_path)

            y = loaded_model.predict(x)
            self.assertAllClose(ref_y, y, atol=1e-05)
    def test_saving_functional_model_without_compile(self):
        with self.cached_session():
            inputs = keras.layers.Input(shape=(3, ))
            x = keras.layers.Dense(2)(inputs)
            output = keras.layers.Dense(3)(x)

            model = keras.models.Model(inputs, output)

            x = np.random.random((1, 3))
            y = np.random.random((1, 3))

            ref_y = model.predict(x)

            temp_saved_model = self._save_model_dir()
            output_path = keras_saved_model.export(model, temp_saved_model)
            loaded_model = keras_saved_model.load_from_saved_model(output_path)

            y = loaded_model.predict(x)
            self.assertAllClose(ref_y, y, atol=1e-05)
    def testSaveAndLoadSavedModelWithCustomObject(self):
        saved_model_path = self._save_model_dir()
        with session.Session(graph=ops.Graph()) as sess:

            def relu6(x):
                return keras.backend.relu(x, max_value=6)

            inputs = keras.layers.Input(shape=(1, ))
            outputs = keras.layers.Activation(relu6)(inputs)
            model = keras.models.Model(inputs, outputs)
            output_path = keras_saved_model.export(
                model, saved_model_path, custom_objects={'relu6': relu6})
        with session.Session(graph=ops.Graph()) as sess:
            inputs, outputs, _ = load_model(sess, output_path,
                                            mode_keys.ModeKeys.PREDICT)
            input_name = model.input_names[0]
            output_name = model.output_names[0]
            predictions = sess.run(outputs[output_name],
                                   {inputs[input_name]: [[7], [-3], [4]]})
            self.assertAllEqual([[6], [0], [4]], predictions)
    def testServingOnly(self, model_builder, input_signature):
        if context.executing_eagerly():
            saved_model_path = self._save_model_dir()
            input_arr = np.random.random((5, 3)).astype(np.float32)
            model = model_builder()
            ref_predict = model.predict(input_arr)

            output_path = keras_saved_model.export(
                model,
                saved_model_path,
                serving_only=True,
                input_signature=input_signature)

            # Load predict graph, and test predictions
            with session.Session(graph=ops.Graph()) as sess:
                inputs, outputs, _ = load_model(sess, output_path,
                                                mode_keys.ModeKeys.PREDICT)
                predictions = sess.run(
                    outputs[next(iter(outputs.keys()))],
                    {inputs[next(iter(inputs.keys()))]: input_arr})
                self.assertAllClose(ref_predict, predictions, atol=1e-05)
    def test_saving_functional_model(self):
        with self.cached_session():
            inputs = keras.layers.Input(shape=(3, ))
            x = keras.layers.Dense(2)(inputs)
            output = keras.layers.Dense(3)(x)

            model = keras.models.Model(inputs, output)
            model.compile(loss=keras.losses.MSE,
                          optimizer=keras.optimizers.RMSprop(lr=0.0001),
                          metrics=[keras.metrics.categorical_accuracy])
            x = np.random.random((1, 3))
            y = np.random.random((1, 3))
            model.train_on_batch(x, y)

            ref_y = model.predict(x)

            temp_saved_model = self._save_model_dir()
            output_path = keras_saved_model.export(model, temp_saved_model)
            loaded_model = keras_saved_model.load_from_saved_model(output_path)

            y = loaded_model.predict(x)
            self.assertAllClose(ref_y, y, atol=1e-05)
    def test_saving_sequential_model(self):
        with self.cached_session():
            model = keras.models.Sequential()
            model.add(keras.layers.Dense(2, input_shape=(3, )))
            model.add(keras.layers.RepeatVector(3))
            model.add(keras.layers.TimeDistributed(keras.layers.Dense(3)))
            model.compile(loss=keras.losses.MSE,
                          optimizer=keras.optimizers.RMSprop(lr=0.0001),
                          metrics=[keras.metrics.categorical_accuracy],
                          sample_weight_mode='temporal')
            x = np.random.random((1, 3))
            y = np.random.random((1, 3, 3))
            model.train_on_batch(x, y)

            ref_y = model.predict(x)

            temp_saved_model = self._save_model_dir()
            output_path = keras_saved_model.export(model, temp_saved_model)

            loaded_model = keras_saved_model.load_from_saved_model(output_path)
            y = loaded_model.predict(x)
            self.assertAllClose(ref_y, y, atol=1e-05)
Example #10
0
    def testSaveAndLoadSavedModelExport(self, model_builder,
                                        uses_learning_phase, optimizer,
                                        train_before_export):
        saved_model_path = self._save_model_dir()
        with self.session(graph=ops.Graph()):
            np.random.seed(130)
            input_arr = np.random.random((1, 3))
            target_arr = np.random.random((1, 3))

            model = model_builder(uses_learning_phase)
            if optimizer is not None:
                model.compile(loss='mse', optimizer=optimizer, metrics=['mae'])
                if train_before_export:
                    model.train_on_batch(input_arr, target_arr)

                ref_loss, ref_mae = model.evaluate(input_arr, target_arr)

            ref_predict = model.predict(input_arr)

            # Export SavedModel
            output_path = keras_saved_model.export(model, saved_model_path)

        input_name = model.input_names[0]
        output_name = model.output_names[0]
        target_name = output_name + '_target'

        # Load predict graph, and test predictions
        with session.Session(graph=ops.Graph()) as sess:
            inputs, outputs, _ = load_model(sess, output_path,
                                            mode_keys.ModeKeys.PREDICT)

            predictions = sess.run(outputs[output_name],
                                   {inputs[input_name]: input_arr})
            self.assertAllClose(ref_predict, predictions, atol=1e-05)

        if optimizer:
            # Load eval graph, and test predictions, loss and metric values
            with session.Session(graph=ops.Graph()) as sess:
                inputs, outputs, _ = load_model(sess, output_path,
                                                mode_keys.ModeKeys.TEST)

                # First obtain the loss and predictions, and run the metric update op by
                # feeding in the inputs and targets.
                loss, predictions, _ = sess.run(
                    (outputs['loss'], outputs['predictions/' + output_name],
                     outputs['metrics/mean_absolute_error/update_op']), {
                         inputs[input_name]: input_arr,
                         inputs[target_name]: target_arr
                     })

                # The metric value should be run after the update op, to ensure that it
                # reflects the correct value.
                metric_value = sess.run(
                    outputs['metrics/mean_absolute_error/value'])

                self.assertEqual(int(train_before_export),
                                 sess.run(training_module.get_global_step()))
                self.assertAllClose(ref_loss, loss, atol=1e-05)
                self.assertAllClose(ref_mae, metric_value, atol=1e-05)
                self.assertAllClose(ref_predict, predictions, atol=1e-05)

            # Load train graph, and check for the train op, and prediction values
            with session.Session(graph=ops.Graph()) as sess:
                inputs, outputs, meta_graph_def = load_model(
                    sess, output_path, mode_keys.ModeKeys.TRAIN)
                self.assertEqual(int(train_before_export),
                                 sess.run(training_module.get_global_step()))
                self.assertIn('loss', outputs)
                self.assertIn('metrics/mean_absolute_error/update_op', outputs)
                self.assertIn('metrics/mean_absolute_error/value', outputs)
                self.assertIn('predictions/' + output_name, outputs)

                # Train for a step
                train_op = loader_impl.get_train_op(meta_graph_def)
                train_outputs, _ = sess.run([outputs, train_op], {
                    inputs[input_name]: input_arr,
                    inputs[target_name]: target_arr
                })
                self.assertEqual(
                    int(train_before_export) + 1,
                    sess.run(training_module.get_global_step()))

                if uses_learning_phase:
                    self.assertAllClose([[0, 0, 0]],
                                        train_outputs['predictions/' +
                                                      output_name],
                                        atol=1e-05)
                else:
                    self.assertNotAllClose([[0, 0, 0]],
                                           train_outputs['predictions/' +
                                                         output_name],
                                           atol=1e-05)