def pack_uint8_r2_to_uint32(self, test_input):
    num_rows, num_columns = test_input.get_shape().as_list()
    num_output_columns = int(math.ceil(num_columns / 4.0))
    padding_input = array_ops.pad(
        math_ops.cast(test_input, dtype=dtypes.uint8),
        constant_op.constant([[
            0,
            0,
        ], [0, num_output_columns * 4 - num_columns]]))
    output = array_ops.zeros([num_rows, num_output_columns],
                             dtype=dtypes.uint32)
    num_elements_per_pack = 4
    shift_bits = 8

    iota_r1 = math_ops.range(num_output_columns * num_elements_per_pack)

    for p in range(num_elements_per_pack):
      selected_index = math_ops.equal(
          math_ops.mod(iota_r1, num_elements_per_pack), p)
      gather_index = array_ops.boolean_mask(iota_r1, selected_index)
      gathered_input = array_ops.gather(padding_input, gather_index, axis=1)
      total_shift_bits = shift_bits * (num_elements_per_pack - p - 1)
      left_shift_input = bitwise_ops.left_shift(
          math_ops.cast(gathered_input, dtype=dtypes.uint32), total_shift_bits)
      output = bitwise_ops.bitwise_or(output, left_shift_input)
    return output
  def testShapeInference(self):
    dtype_list = [dtypes.int8, dtypes.int16, dtypes.int32, dtypes.int64,
                  dtypes.uint8, dtypes.uint16]

    with self.test_session(use_gpu=True) as sess:
      for dtype in dtype_list:
        lhs = constant_op.constant([[0], [3], [5]], dtype=dtype)
        rhs = constant_op.constant([[1, 2, 4]], dtype=dtype)

        and_tensor = bitwise_ops.bitwise_and(lhs, rhs)
        or_tensor = bitwise_ops.bitwise_or(lhs, rhs)
        xor_tensor = bitwise_ops.bitwise_xor(lhs, rhs)
        ls_tensor = bitwise_ops.left_shift(lhs, rhs)
        rs_tensor = bitwise_ops.right_shift(lhs, rhs)

        and_result, or_result, xor_result, ls_result, rs_result = sess.run(
            [and_tensor, or_tensor, xor_tensor, ls_tensor, rs_tensor])

        # Compare shape inference with result
        self.assertAllEqual(and_tensor.get_shape().as_list(), and_result.shape)
        self.assertAllEqual(and_tensor.get_shape().as_list(), [3, 3])
        self.assertAllEqual(or_tensor.get_shape().as_list(), or_result.shape)
        self.assertAllEqual(or_tensor.get_shape().as_list(), [3, 3])
        self.assertAllEqual(xor_tensor.get_shape().as_list(), xor_result.shape)
        self.assertAllEqual(xor_tensor.get_shape().as_list(), [3, 3])
        self.assertAllEqual(ls_tensor.get_shape().as_list(), ls_result.shape)
        self.assertAllEqual(ls_tensor.get_shape().as_list(), [3, 3])
        self.assertAllEqual(rs_tensor.get_shape().as_list(), rs_result.shape)
        self.assertAllEqual(rs_tensor.get_shape().as_list(), [3, 3])
Example #3
0
    def pack_uint8_r2_to_uint32(self, test_input):
        num_rows, num_columns = test_input.get_shape().as_list()
        num_output_columns = int(math.ceil(num_columns / 4.0))
        padding_input = array_ops.pad(
            math_ops.cast(test_input, dtype=dtypes.uint8),
            constant_op.constant([[
                0,
                0,
            ], [0, num_output_columns * 4 - num_columns]]))
        output = array_ops.zeros([num_rows, num_output_columns],
                                 dtype=dtypes.uint32)
        num_elements_per_pack = 4
        shift_bits = 8

        iota_r1 = math_ops.range(num_output_columns * num_elements_per_pack)

        for p in range(num_elements_per_pack):
            selected_index = math_ops.equal(
                math_ops.mod(iota_r1, num_elements_per_pack), p)
            gather_index = array_ops.boolean_mask(iota_r1, selected_index)
            gathered_input = array_ops.gather(padding_input,
                                              gather_index,
                                              axis=1)
            total_shift_bits = shift_bits * (num_elements_per_pack - p - 1)
            left_shift_input = bitwise_ops.left_shift(
                math_ops.cast(gathered_input, dtype=dtypes.uint32),
                total_shift_bits)
            output = bitwise_ops.bitwise_or(output, left_shift_input)
        return output
  def testShapeInference(self):
    dtype_list = [dtypes.int8, dtypes.int16, dtypes.int32, dtypes.int64,
                  dtypes.uint8, dtypes.uint16]

    with self.session() as sess:
      for dtype in dtype_list:
        lhs = constant_op.constant([[0], [3], [5]], dtype=dtype)
        rhs = constant_op.constant([[1, 2, 4]], dtype=dtype)

        and_tensor = bitwise_ops.bitwise_and(lhs, rhs)
        or_tensor = bitwise_ops.bitwise_or(lhs, rhs)
        xor_tensor = bitwise_ops.bitwise_xor(lhs, rhs)
        ls_tensor = bitwise_ops.left_shift(lhs, rhs)
        rs_tensor = bitwise_ops.right_shift(lhs, rhs)

        and_result, or_result, xor_result, ls_result, rs_result = sess.run(
            [and_tensor, or_tensor, xor_tensor, ls_tensor, rs_tensor])

        # Compare shape inference with result
        self.assertAllEqual(and_tensor.get_shape().as_list(), and_result.shape)
        self.assertAllEqual(and_tensor.get_shape().as_list(), [3, 3])
        self.assertAllEqual(or_tensor.get_shape().as_list(), or_result.shape)
        self.assertAllEqual(or_tensor.get_shape().as_list(), [3, 3])
        self.assertAllEqual(xor_tensor.get_shape().as_list(), xor_result.shape)
        self.assertAllEqual(xor_tensor.get_shape().as_list(), [3, 3])
        self.assertAllEqual(ls_tensor.get_shape().as_list(), ls_result.shape)
        self.assertAllEqual(ls_tensor.get_shape().as_list(), [3, 3])
        self.assertAllEqual(rs_tensor.get_shape().as_list(), rs_result.shape)
        self.assertAllEqual(rs_tensor.get_shape().as_list(), [3, 3])
  def testShiftsWithNegativeLHS(self):
    dtype_list = [np.int8, np.int16, np.int32, np.int64]

    with self.test_session(use_gpu=True) as sess:
      for dtype in dtype_list:
        lhs = np.array([-1, -5, -3, -14], dtype=dtype)
        rhs = np.array([5, 0, 7, 11], dtype=dtype)
        left_shift_result, right_shift_result = sess.run(
            [bitwise_ops.left_shift(lhs, rhs),
             bitwise_ops.right_shift(lhs, rhs)])
        self.assertAllEqual(left_shift_result, np.left_shift(lhs, rhs))
        self.assertAllEqual(right_shift_result, np.right_shift(lhs, rhs))
Example #6
0
  def testShiftsWithNegativeLHS(self):
    dtype_list = [np.int8, np.int16, np.int32, np.int64]

    with self.session(use_gpu=True) as sess:
      for dtype in dtype_list:
        lhs = np.array([-1, -5, -3, -14], dtype=dtype)
        rhs = np.array([5, 0, 7, 11], dtype=dtype)
        left_shift_result, right_shift_result = sess.run(
            [bitwise_ops.left_shift(lhs, rhs),
             bitwise_ops.right_shift(lhs, rhs)])
        self.assertAllEqual(left_shift_result, np.left_shift(lhs, rhs))
        self.assertAllEqual(right_shift_result, np.right_shift(lhs, rhs))
  def testImplementationDefinedShiftsDoNotCrash(self):
    dtype_list = [np.int8, np.int16, np.int32, np.int64]

    with self.test_session(use_gpu=True) as sess:
      for dtype in dtype_list:
        lhs = np.array([-1, -5, -3, -14], dtype=dtype)
        rhs = np.array([-2, 64, 101, 32], dtype=dtype)
        # We intentionally do not test for specific values here since the exact
        # outputs are implementation-defined. However, we should not crash or
        # trigger an undefined-behavior error from tools such as
        # AddressSanitizer.
        sess.run([bitwise_ops.left_shift(lhs, rhs),
                  bitwise_ops.right_shift(lhs, rhs)])
Example #8
0
  def testImplementationDefinedShiftsDoNotCrash(self):
    dtype_list = [np.int8, np.int16, np.int32, np.int64]

    with self.session(use_gpu=True) as sess:
      for dtype in dtype_list:
        lhs = np.array([-1, -5, -3, -14], dtype=dtype)
        rhs = np.array([-2, 64, 101, 32], dtype=dtype)
        # We intentionally do not test for specific values here since the exact
        # outputs are implementation-defined. However, we should not crash or
        # trigger an undefined-behavior error from tools such as
        # AddressSanitizer.
        sess.run([bitwise_ops.left_shift(lhs, rhs),
                  bitwise_ops.right_shift(lhs, rhs)])
  def testShiftsWithPositiveLHS(self):
    dtype_list = [np.int8, np.int16, np.int32, np.int64,
                  np.uint8, np.uint16, np.uint32, np.uint64]

    with self.session() as sess:
      for dtype in dtype_list:
        lhs = np.array([0, 5, 3, 14], dtype=dtype)
        rhs = np.array([5, 0, 7, 3], dtype=dtype)
        left_shift_result, right_shift_result = sess.run(
            [bitwise_ops.left_shift(lhs, rhs),
             bitwise_ops.right_shift(lhs, rhs)])
        self.assertAllEqual(left_shift_result, np.left_shift(lhs, rhs))
        self.assertAllEqual(right_shift_result, np.right_shift(lhs, rhs))
Example #10
0
def binarize_dense_fast(x, transpose=False):
    if transpose:
        x = tf.transpose(x, [1, 0])
    h, w = x.shape
    num_bins = int(w / 64)
    # Create shift tensor and apply it to binarized input.
    shift_bits = tf.broadcast_to(tf.range(64, dtype=tf.int64), x.shape)
    binary_x = tf.cast(x > 0, tf.int64)
    binary_x = bitwise_ops.left_shift(binary_x, shift_bits)
    # Split binarized x into chunks.
    binary_chunks = tf.split(binary_x, num_bins, axis=-1)
    # Combine chunks using bitwise or (equivalent to reduce sum).
    packed_x = tf.reduce_sum(binary_chunks, axis=-1)
    packed_x = tf.transpose(packed_x, [1, 0])
    return packed_x
Example #11
0
def binarize_dense(x, transpose=False):
    if transpose:
        x = tf.transpose(x, [1, 0])
    h, w = x.shape
    num_bins = int(w / 64)
    binary_x = tf.cast(x > 0, tf.int64)
    packed_x = []
    for b in range(num_bins):
        packed_x.append(tf.zeros(shape=[h], dtype=tf.int64))
    for k in range(num_bins):
        for b in range(64):
            packed_x[k] = bitwise_ops.bitwise_or(
                packed_x[k], bitwise_ops.left_shift(binary_x[:, 64 * k + b],
                                                    b))
    packed_x = tf.stack(packed_x, axis=-1)
    return packed_x
def uint32s_to_uint64(x):
    return bitwise_ops.bitwise_or(
        math_ops.cast(x[0], dtypes.uint64),
        bitwise_ops.left_shift(math_ops.cast(x[1], dtypes.uint64),
                               constant_op.constant(32, dtypes.uint64)))