Example #1
0
 def _sample_kmc2_chain():
     """Returns previous centers as well as a new center sampled using k-MC2."""
     # Extract the subset from the underlying batch.
     start = i * self._kmc2_chain_length
     end = start + self._kmc2_chain_length
     subset = first_shard[start:end]
     # Compute the distances from points in the subset to previous centers.
     _, distances = gen_clustering_ops.nearest_neighbors(
         subset, self._cluster_centers, 1)
     # Sample index of new center using k-MC2 Markov chain.
     new_center_index = gen_clustering_ops.kmc2_chain_initialization(
         array_ops.squeeze(distances), self._seed)
     # Extract actual new center.
     newly_sampled_center = array_ops.reshape(
         subset[new_center_index], [1, -1])
     # Return concatenation with previously sampled centers.
     if self._distance_metric == COSINE_DISTANCE:
         newly_sampled_center = nn_impl.l2_normalize(
             newly_sampled_center, dim=1)
     return array_ops.concat(
         [self._cluster_centers, newly_sampled_center], 0)
 def _sample_kmc2_chain():
   """Returns previous centers as well as a new center sampled using k-MC2.
   """
   # Extract the subset from the underlying batch.
   start = i * self._kmc2_chain_length
   end = start + self._kmc2_chain_length
   subset = first_shard[start:end]
   # Compute the distances from points in the subset to previous centers.
   _, distances = gen_clustering_ops.nearest_neighbors(
       subset, self._cluster_centers, 1)
   # Sample index of new center using k-MC2 Markov chain.
   new_center_index = gen_clustering_ops.kmc2_chain_initialization(
       array_ops.squeeze(distances), self._seed)
   # Extract actual new center.
   newly_sampled_center = array_ops.reshape(subset[new_center_index],
                                            [1, -1])
   # Return concatenation with previously sampled centers.
   if self._distance_metric == COSINE_DISTANCE:
     newly_sampled_center = nn_impl.l2_normalize(
         newly_sampled_center, dim=1)
   return array_ops.concat([self._cluster_centers, newly_sampled_center],
                           0)