def from_structure(output_types, output_shapes=None, shared_name=None, output_classes=None): """Creates a new, uninitialized `Iterator` with the given structure. This iterator-constructing method can be used to create an iterator that is reusable with many different datasets. The returned iterator is not bound to a particular dataset, and it has no `initializer`. To initialize the iterator, run the operation returned by `Iterator.make_initializer(dataset)`. The following is an example ```python iterator = Iterator.from_structure(tf.int64, tf.TensorShape([])) dataset_range = Dataset.range(10) range_initializer = iterator.make_initializer(dataset_range) dataset_evens = dataset_range.filter(lambda x: x % 2 == 0) evens_initializer = iterator.make_initializer(dataset_evens) # Define a model based on the iterator; in this example, the model_fn # is expected to take scalar tf.int64 Tensors as input (see # the definition of 'iterator' above). prediction, loss = model_fn(iterator.get_next()) # Train for `num_epochs`, where for each epoch, we first iterate over # dataset_range, and then iterate over dataset_evens. for _ in range(num_epochs): # Initialize the iterator to `dataset_range` sess.run(range_initializer) while True: try: pred, loss_val = sess.run([prediction, loss]) except tf.errors.OutOfRangeError: break # Initialize the iterator to `dataset_evens` sess.run(evens_initializer) while True: try: pred, loss_val = sess.run([prediction, loss]) except tf.errors.OutOfRangeError: break ``` Args: output_types: A nested structure of `tf.DType` objects corresponding to each component of an element of this dataset. output_shapes: (Optional.) A nested structure of `tf.TensorShape` objects corresponding to each component of an element of this dataset. If omitted, each component will have an unconstrainted shape. shared_name: (Optional.) If non-empty, this iterator will be shared under the given name across multiple sessions that share the same devices (e.g. when using a remote server). output_classes: (Optional.) A nested structure of Python `type` objects corresponding to each component of an element of this iterator. If omitted, each component is assumed to be of type `tf.Tensor`. Returns: An `Iterator`. Raises: TypeError: If the structures of `output_shapes` and `output_types` are not the same. """ output_types = nest.map_structure(dtypes.as_dtype, output_types) if output_shapes is None: output_shapes = nest.map_structure( lambda _: tensor_shape.TensorShape(None), output_types) else: output_shapes = nest.map_structure_up_to(output_types, tensor_shape.as_shape, output_shapes) if output_classes is None: output_classes = nest.map_structure(lambda _: ops.Tensor, output_types) nest.assert_same_structure(output_types, output_shapes) output_structure = structure.convert_legacy_structure( output_types, output_shapes, output_classes) if shared_name is None: shared_name = "" if _device_stack_is_empty(): with ops.device("/cpu:0"): iterator_resource = gen_dataset_ops.iterator_v2( container="", shared_name=shared_name, output_types=structure.get_flat_tensor_types( output_structure), output_shapes=structure.get_flat_tensor_shapes( output_structure)) else: iterator_resource = gen_dataset_ops.iterator_v2( container="", shared_name=shared_name, output_types=structure.get_flat_tensor_types(output_structure), output_shapes=structure.get_flat_tensor_shapes( output_structure)) return Iterator(iterator_resource, None, output_types, output_shapes, output_classes)
def from_structure(output_types, output_shapes=None, shared_name=None, output_classes=None): """Creates a new, uninitialized `Iterator` with the given structure. This iterator-constructing method can be used to create an iterator that is reusable with many different datasets. The returned iterator is not bound to a particular dataset, and it has no `initializer`. To initialize the iterator, run the operation returned by `Iterator.make_initializer(dataset)`. The following is an example ```python iterator = Iterator.from_structure(tf.int64, tf.TensorShape([])) dataset_range = Dataset.range(10) range_initializer = iterator.make_initializer(dataset_range) dataset_evens = dataset_range.filter(lambda x: x % 2 == 0) evens_initializer = iterator.make_initializer(dataset_evens) # Define a model based on the iterator; in this example, the model_fn # is expected to take scalar tf.int64 Tensors as input (see # the definition of 'iterator' above). prediction, loss = model_fn(iterator.get_next()) # Train for `num_epochs`, where for each epoch, we first iterate over # dataset_range, and then iterate over dataset_evens. for _ in range(num_epochs): # Initialize the iterator to `dataset_range` sess.run(range_initializer) while True: try: pred, loss_val = sess.run([prediction, loss]) except tf.errors.OutOfRangeError: break # Initialize the iterator to `dataset_evens` sess.run(evens_initializer) while True: try: pred, loss_val = sess.run([prediction, loss]) except tf.errors.OutOfRangeError: break ``` Args: output_types: A nested structure of `tf.DType` objects corresponding to each component of an element of this dataset. output_shapes: (Optional.) A nested structure of `tf.TensorShape` objects corresponding to each component of an element of this dataset. If omitted, each component will have an unconstrainted shape. shared_name: (Optional.) If non-empty, this iterator will be shared under the given name across multiple sessions that share the same devices (e.g. when using a remote server). output_classes: (Optional.) A nested structure of Python `type` objects corresponding to each component of an element of this iterator. If omitted, each component is assumed to be of type `tf.Tensor`. Returns: An `Iterator`. Raises: TypeError: If the structures of `output_shapes` and `output_types` are not the same. """ output_types = nest.map_structure(dtypes.as_dtype, output_types) if output_shapes is None: output_shapes = nest.map_structure( lambda _: tensor_shape.TensorShape(None), output_types) else: output_shapes = nest.map_structure_up_to( output_types, tensor_shape.as_shape, output_shapes) if output_classes is None: output_classes = nest.map_structure(lambda _: ops.Tensor, output_types) nest.assert_same_structure(output_types, output_shapes) output_structure = structure_lib.convert_legacy_structure( output_types, output_shapes, output_classes) if shared_name is None: shared_name = "" # pylint: disable=protected-access if compat.forward_compatible(2018, 8, 3): if _device_stack_is_empty(): with ops.device("/cpu:0"): iterator_resource = gen_dataset_ops.iterator_v2( container="", shared_name=shared_name, output_types=output_structure._flat_types, output_shapes=output_structure._flat_shapes) else: iterator_resource = gen_dataset_ops.iterator_v2( container="", shared_name=shared_name, output_types=output_structure._flat_types, output_shapes=output_structure._flat_shapes) else: iterator_resource = gen_dataset_ops.iterator( container="", shared_name=shared_name, output_types=output_structure._flat_types, output_shapes=output_structure._flat_shapes) # pylint: enable=protected-access return Iterator(iterator_resource, None, output_types, output_shapes, output_classes)