def testSparseRepeatedIndices(self): for dtype in [dtypes.half, dtypes.float32, dtypes.float64]: with self.cached_session(): repeated_index_update_var = variables.Variable([[1.0], [2.0]], dtype=dtype) aggregated_update_var = variables.Variable([[1.0], [2.0]], dtype=dtype) grad_repeated_index = ops.IndexedSlices( constant_op.constant([0.1, 0.1], shape=[2, 1], dtype=dtype), constant_op.constant([1, 1]), constant_op.constant([2, 1])) grad_aggregated = ops.IndexedSlices( constant_op.constant([0.2], shape=[1, 1], dtype=dtype), constant_op.constant([1]), constant_op.constant([2, 1])) repeated_update = lamb.LAMBOptimizer().apply_gradients([ (grad_repeated_index, repeated_index_update_var) ]) aggregated_update = lamb.LAMBOptimizer().apply_gradients([ (grad_aggregated, aggregated_update_var) ]) variables.global_variables_initializer().run() self.assertAllClose(aggregated_update_var.eval(), self.evaluate(repeated_index_update_var)) for _ in range(3): repeated_update.run() aggregated_update.run() self.assertAllClose( aggregated_update_var.eval(), self.evaluate(repeated_index_update_var))
def test_ops_with_var_and_lamb(self): var_list = [ deo.get_variable('sp_var', initializer=0.0, dim=2), ] opt_list = [ lamb.LAMBOptimizer(), ] self.common_run_context(var_list, opt_list, name='lamb_test')
def testSlotsUniqueEager(self): with context.eager_mode(): v1 = resource_variable_ops.ResourceVariable(1.) v2 = resource_variable_ops.ResourceVariable(1.) opt = lamb.LAMBOptimizer(learning_rate=1.) opt.minimize(lambda: v1 + v2) # There should be two non-slot variables, and two unique slot variables # for v1 and v2 respectively. self.assertEqual(6, len({id(v) for v in opt.variables()}))
def doTestSparse(self, use_resource=False): for dtype in [dtypes.half, dtypes.float32, dtypes.float64]: with self.cached_session(): # Initialize variables for numpy implementation. m0, v0, m1, v1 = 0.0, 0.0, 0.0, 0.0 var0_np = np.array([1.0, 2.0], dtype=dtype.as_numpy_dtype) grads0_np = np.array([0.1, 0.1], dtype=dtype.as_numpy_dtype) var1_np = np.array([3.0, 4.0], dtype=dtype.as_numpy_dtype) grads1_np = np.array([0.01, 0.01], dtype=dtype.as_numpy_dtype) if use_resource: var0 = resource_variable_ops.ResourceVariable(var0_np) var1 = resource_variable_ops.ResourceVariable(var1_np) else: var0 = variables.RefVariable(var0_np) var1 = variables.RefVariable(var1_np) grads0_np_indices = np.array([0, 1], dtype=np.int32) grads0 = ops.IndexedSlices( constant_op.constant(grads0_np), constant_op.constant(grads0_np_indices), constant_op.constant([2])) grads1_np_indices = np.array([0, 1], dtype=np.int32) grads1 = ops.IndexedSlices( constant_op.constant(grads1_np), constant_op.constant(grads1_np_indices), constant_op.constant([2])) opt = lamb.LAMBOptimizer() update = opt.apply_gradients( zip([grads0, grads1], [var0, var1])) variables.global_variables_initializer().run() # Fetch params to validate initial values self.assertAllClose([1.0, 2.0], self.evaluate(var0)) self.assertAllClose([3.0, 4.0], self.evaluate(var1)) beta1_power, beta2_power = opt._get_beta_accumulators() # Run 3 steps of Lamb for t in range(1, 4): self.assertAllCloseAccordingToType( 0.9**t, self.evaluate(beta1_power)) self.assertAllCloseAccordingToType( 0.999**t, self.evaluate(beta2_power)) update.run() var0_np, m0, v0 = lamb_update_numpy( var0_np, grads0_np, t, m0, v0) var1_np, m1, v1 = lamb_update_numpy( var1_np, grads1_np, t, m1, v1) # Validate updated params self.assertAllCloseAccordingToType(var0_np, self.evaluate(var0)) self.assertAllCloseAccordingToType(var1_np, self.evaluate(var1))
def testSparseDevicePlacement(self): for index_dtype in [dtypes.int32, dtypes.int64]: with self.cached_session(force_gpu=test.is_gpu_available()): # If a GPU is available, tests that all optimizer ops can be placed on # it (i.e. they have GPU kernels). var = variables.Variable([[1.0], [2.0]]) indices = constant_op.constant([0, 1], dtype=index_dtype) gathered_sum = math_ops.reduce_sum( array_ops.gather(var, indices)) optimizer = lamb.LAMBOptimizer(learning_rate=3.0) minimize_op = optimizer.minimize(gathered_sum) variables.global_variables_initializer().run() minimize_op.run()
def testSharing(self): for dtype in [dtypes.half, dtypes.float32, dtypes.float64]: with self.cached_session(): # Initialize variables for numpy implementation. m0, v0, m1, v1 = 0.0, 0.0, 0.0, 0.0 var0_np = np.array([1.0, 2.0], dtype=dtype.as_numpy_dtype) grads0_np = np.array([0.1, 0.1], dtype=dtype.as_numpy_dtype) var1_np = np.array([3.0, 4.0], dtype=dtype.as_numpy_dtype) grads1_np = np.array([0.01, 0.01], dtype=dtype.as_numpy_dtype) var0 = variables.Variable(var0_np) var1 = variables.Variable(var1_np) grads0 = constant_op.constant(grads0_np) grads1 = constant_op.constant(grads1_np) opt = lamb.LAMBOptimizer() update1 = opt.apply_gradients( zip([grads0, grads1], [var0, var1])) update2 = opt.apply_gradients( zip([grads0, grads1], [var0, var1])) variables.global_variables_initializer().run() beta1_power, beta2_power = opt._get_beta_accumulators() # Fetch params to validate initial values self.assertAllClose([1.0, 2.0], self.evaluate(var0)) self.assertAllClose([3.0, 4.0], self.evaluate(var1)) # Run 3 steps of intertwined Lamb1 and Lamb2. for t in range(1, 4): self.assertAllCloseAccordingToType( 0.9**t, self.evaluate(beta1_power)) self.assertAllCloseAccordingToType( 0.999**t, self.evaluate(beta2_power)) if t % 2 == 0: update1.run() else: update2.run() var0_np, m0, v0 = lamb_update_numpy( var0_np, grads0_np, t, m0, v0) var1_np, m1, v1 = lamb_update_numpy( var1_np, grads1_np, t, m1, v1) # Validate updated params self.assertAllCloseAccordingToType(var0_np, self.evaluate(var0)) self.assertAllCloseAccordingToType(var1_np, self.evaluate(var1))
def testTwoSessions(self): optimizer = lamb.LAMBOptimizer() with context.eager_mode(): var0 = variables.Variable(np.array([1.0, 2.0]), name="v0") grads0 = constant_op.constant(np.array([0.1, 0.1])) optimizer.apply_gradients([(grads0, var0)]) g = ops.Graph() with g.as_default(): with session.Session(): var0 = variables.Variable(np.array([1.0, 2.0]), name="v0") grads0 = constant_op.constant(np.array([0.1, 0.1])) optimizer.apply_gradients([(grads0, var0)]) gg = ops.Graph() with gg.as_default(): with session.Session(): var0 = variables.Variable(np.array([1.0, 2.0]), name="v0") grads0 = constant_op.constant(np.array([0.1, 0.1])) # If the optimizer saves any state not keyed by graph the following line # fails. optimizer.apply_gradients([(grads0, var0)])
def test_lamb_restrict_on_policy(self): opt = lamb.LAMBOptimizer() self.common_single_step_restrict_verification(opt)
def test_lamb_restrictor_update(self): opt = lamb.LAMBOptimizer() self.common_single_step_update_verification(opt)
def doTestBasic(self, use_resource=False, use_callable_params=False): if context.executing_eagerly() and not use_resource: self.skipTest( "Skipping test with use_resource=False and executing eagerly.") for i, dtype in enumerate( [dtypes.half, dtypes.float32, dtypes.float64]): with self.session(graph=ops.Graph()): # Initialize variables for numpy implementation. m0, v0, m1, v1 = 0.0, 0.0, 0.0, 0.0 var0_np = np.array([1.0, 2.0], dtype=dtype.as_numpy_dtype) grads0_np = np.array([0.1, 0.1], dtype=dtype.as_numpy_dtype) var1_np = np.array([3.0, 4.0], dtype=dtype.as_numpy_dtype) grads1_np = np.array([0.01, 0.01], dtype=dtype.as_numpy_dtype) if use_resource: var0 = resource_variable_ops.ResourceVariable( var0_np, name="var0_%d" % i) var1 = resource_variable_ops.ResourceVariable( var1_np, name="var1_%d" % i) else: var0 = variables.RefVariable(var0_np) var1 = variables.RefVariable(var1_np) grads0 = constant_op.constant(grads0_np) grads1 = constant_op.constant(grads1_np) learning_rate = lambda: 0.001 beta1 = lambda: 0.9 beta2 = lambda: 0.999 epsilon = lambda: 1e-8 if not use_callable_params: learning_rate = learning_rate() beta1 = beta1() beta2 = beta2() epsilon = epsilon() opt = lamb.LAMBOptimizer(learning_rate=learning_rate) update = opt.apply_gradients( zip([grads0, grads1], [var0, var1])) opt_variables = opt.variables() beta1_power, beta2_power = opt._get_beta_accumulators() self.assertTrue(beta1_power is not None) self.assertTrue(beta2_power is not None) self.assertIn(beta1_power, opt_variables) self.assertIn(beta2_power, opt_variables) # Ensure that non-slot variables are the same type as the requested # variables. self.assertEqual( use_resource, resource_variable_ops.is_resource_variable(beta1_power)) self.assertEqual( use_resource, resource_variable_ops.is_resource_variable(beta2_power)) if not context.executing_eagerly(): with ops.Graph().as_default(): # Shouldn't return non-slot variables from other graphs. self.assertEqual(0, len(opt.variables())) self.evaluate(variables.global_variables_initializer()) # Fetch params to validate initial values self.assertAllClose([1.0, 2.0], self.evaluate(var0)) self.assertAllClose([3.0, 4.0], self.evaluate(var1)) beta1_power, beta2_power = opt._get_beta_accumulators() # Run 3 steps of Lamb for t in range(1, 4): if not context.executing_eagerly(): self.evaluate(update) elif t > 1: opt.apply_gradients(zip([grads0, grads1], [var0, var1])) self.assertAllCloseAccordingToType( 0.9**(t + 1), self.evaluate(beta1_power)) self.assertAllCloseAccordingToType( 0.999**(t + 1), self.evaluate(beta2_power)) var0_np, m0, v0 = lamb_update_numpy( var0_np, grads0_np, t, m0, v0) var1_np, m1, v1 = lamb_update_numpy( var1_np, grads1_np, t, m1, v1) # Validate updated params self.assertAllCloseAccordingToType(var0_np, self.evaluate(var0)) self.assertAllCloseAccordingToType(var1_np, self.evaluate(var1)) if use_resource: self.assertEqual("var0_%d/LAMB:0" % (i, ), opt.get_slot(var=var0, name="m").name)
def test_lamb_minimize_trainable(self): base_opt = lamb.LAMBOptimizer(0.1) test_opt = lamb.LAMBOptimizer(0.1) self.common_minimize_trainable(base_opt, test_opt, name='lamb')