def power_difference_op(input_x, input_y, input_pow): with tf.Session() as sess: x = tf.placeholder(tf.float32, name='x') y = tf.placeholder(tf.float32, name='y') pow_ = tf.placeholder(tf.float32, name='pow') z = tf.power_difference(x, y, pow_) return sess.run(z, feed_dict={x: input_x, y: input_y, pow_: input_pow})
def power_difference_op(input_x,input_y,input_pow): with tf.Session() as sess: # TODO:完成TensorFlow接口调用 placeholder_x = tf.placeholder(tf.float32, shape=input_x.shape, name='placeholder_x') placeholder_y = tf.placeholder(tf.float32, shape=input_y.shape, name='placeholder_y') placeholder_z = tf.placeholder(tf.float32, name='placeholder_z') out = tf.power_difference(placeholder_x, placeholder_y, placeholder_z) return sess.run(out, feed_dict = {placeholder_x:input_x, placeholder_y:input_y, placeholder_z:input_pow})
def power_difference_op(input_x, input_y, input_pow): with tf.Session() as sess: x = tf.placeholder(tf.float32, shape=input_x.shape) y = tf.placeholder(tf.float32, shape=input_y.shape) pow = tf.placeholder(tf.int32) out = tf.power_difference(x, y, pow) return sess.run(out, feed_dict={ x: input_x, y: input_y, pow: input_pow })
def power_difference_op(input_x,input_y,input_pow): with tf.Session() as sess: # TODO:完成TensorFlow接口调用 out = tf.power_difference() return sess.run(out, feed_dict = {...})