def _train_step(
        self,
        inputs,
        targets,
        batch: int,
        batch_size: int,
        optimizer: tf.keras.optimizers,
        loss_fn: tf.keras.losses,
    ):
        with tf.GradientTape() as tape:
            outputs = self.model(inputs, training=True)
            # Calculate the training prediction tokens
            predictions = self.model.predictions(
                outputs, self.train_dataloader.encoder_target
            )
            # Calculate the loss and update the parameters
            loss = loss_fn(targets, outputs)
        gradients = tape.gradient(loss, self.model.trainable_variables)
        optimizer.apply_gradients(zip(gradients, self.model.trainable_variables))

        metric = self.recorded_losses["train"]
        metric(loss)

        if base.Metrics.ABSOLUTE_ACC in self.metrics:
            self._record_abs_acc(outputs, targets, batch, batch_size, "train")

        logger.info(f"Batch #{batch} : training loss {metric.result()}")

        return predictions
Example #2
0
def train_step(model: tf.keras.Model, x_batch: tf.Tensor, y_batch: tf.Tensor,
               optimizer: tf.keras.optimizers) -> tf.keras.metrics.Mean:
    with tf.GradientTape() as tape:
        loss = loss_fn(model, x_batch, y_batch)
    gradients = tape.gradient(loss, model.trainable_variables)
    optimizer.apply_gradients(zip(gradients, model.trainable_variables))
    return train_loss(loss)
 def trainer(
     j_hat: JHat,
     datasets: Tuple[tf.keras.utils.Sequence, tf.keras.utils.Sequence],
     optimizer: tf.keras.optimizers = tf.keras.optimizers.Adam,
     learning_rate: float = 1e-3,
     preprocess_fn: Callable = None,
     epochs: int = 20,
     reg_loss_fn: Callable = (lambda kernel: 0),
     verbose: int = 1,
 ) -> None:
     """
     Train the kernel to maximise an estimate of test power using minibatch gradient descent.
     """
     ds_ref, ds_cur = datasets
     optimizer = optimizer(learning_rate)
     n_minibatch = min(len(ds_ref), len(ds_cur))
     # iterate over epochs
     loss_ma = 0.
     for epoch in range(epochs):
         if verbose:
             pbar = tf.keras.utils.Progbar(n_minibatch, 1)
         for step, (x_ref, x_cur) in enumerate(zip(ds_ref, ds_cur)):
             if isinstance(preprocess_fn, Callable):  # type: ignore
                 x_ref, x_cur = preprocess_fn(x_ref), preprocess_fn(x_cur)
             with tf.GradientTape() as tape:
                 estimate = j_hat(x_ref, x_cur)
                 loss = -estimate + reg_loss_fn(j_hat.kernel)  # ascent
             grads = tape.gradient(loss, j_hat.trainable_weights)
             optimizer.apply_gradients(zip(grads, j_hat.trainable_weights))
             if verbose == 1:
                 loss_ma = loss_ma + (loss - loss_ma) / (step + 1)
                 pbar_values = [('loss', loss_ma)]
                 pbar.add(1, values=pbar_values)
Example #4
0
def explainer_train_step(
    index: tf.Tensor,
    X: tf.Tensor,
    y: tf.Tensor,
    sample_weights: tf.Tensor,
    explainer: tf.keras.Model,
    optimizer: tf.keras.optimizers,
):
    with tf.GradientTape() as tape:
        loss = explainer_mse_loss(explainer(index, X), y, sample_weights)
    gradients = tape.gradient(loss, explainer.trainable_variables)
    optimizer.apply_gradients(zip(gradients, explainer.trainable_variables))
Example #5
0
def train_iteration(initial_state: tf.Tensor, gamma: float,
                    max_iter_step: tf.int32, actor_model: tf.keras.Model,
                    critic_model: tf.keras.Model,
                    optimizer: tf.keras.optimizers) -> List[tf.Tensor]:
    state_curr = initial_state
    state_shape = initial_state.shape

    step_reward = 0
    avg_reward = 0.
    # state_curr = tf.expand_dims(state_curr, 0)
    for curr_step in tf.range(max_iter_step):
        with tf.GradientTape(persistent=True) as tape:

            action_net_out = actor_model(state_curr)
            value_curr_out = critic_model(state_curr)

            action_net_out = tf.reshape(action_net_out, action_shape)
            action_prob_softmax = tf.nn.softmax(action_net_out)
            action = tf.random.categorical(tf.math.log(action_prob_softmax), 1)
            action = tf.squeeze(action)

            state_next, step_reward = tf_env_step(action)
            state_next.set_shape(state_shape)
            state_next = tf.expand_dims(state_next, 0)

            value_next_out = critic_model(state_next)
            avg_reward = 0.99 * avg_reward + \
                0.01 * tf.cast(step_reward, tf.float32)

            TD_err = tf.cast(step_reward, dtype=tf.float32) - avg_reward + \
                gamma * value_next_out - value_curr_out
            loss_actor = -TD_err * tf.math.reduce_sum([
                tf.math.log(action_prob_softmax[i, j])
                for i, j in enumerate(action)
            ])
            loss_critic = tf.square(TD_err)

        grads_actor = tape.gradient(loss_actor,
                                    actor_model.trainable_variables)
        grads_critic = tape.gradient(loss_critic,
                                     critic_model.trainable_variables)
        optimizer.apply_gradients(
            zip(grads_actor, actor_model.trainable_variables))
        optimizer.apply_gradients(
            zip(grads_critic, critic_model.trainable_variables))

        state_curr = state_next

        if curr_step % 100 == 1:
            print(f'Step: {curr_step}, average rewards = {avg_reward}'
                  f' elite num = {len(env.elite_list)}\n')

    return [avg_reward, len(env.elite_list)]
Example #6
0
 def exponentialDecay(self, optimizer: tf.keras.optimizers, k: float,
                      epoch: int):
     self.learning_rate = optimizer.learning_rate
     if self.learning_rate > 1e-5:
         optimizer.learning_rate = self.learning_rate * np.exp([k * epoch
                                                                ])[0]
         self.learning_rate = optimizer.learning_rate
     return optimizer
Example #7
0
def trainer(
    model: tf.keras.Model,
    loss_fn: tf.keras.losses,
    X_train: np.ndarray,
    y_train: np.ndarray = None,
    optimizer: tf.keras.optimizers = tf.keras.optimizers.Adam(
        learning_rate=1e-3),
    loss_fn_kwargs: dict = None,
    preprocess_fn: Callable = None,
    epochs: int = 20,
    batch_size: int = 64,
    buffer_size: int = 1024,
    verbose: bool = True,
    log_metric: Tuple[str, "tf.keras.metrics"] = None,
    callbacks: tf.keras.callbacks = None
) -> None:  # TODO: incorporate callbacks + LR schedulers
    """
    Train TensorFlow model.

    Parameters
    ----------
    model
        Model to train.
    loss_fn
        Loss function used for training.
    X_train
        Training batch.
    y_train
        Training labels.
    optimizer
        Optimizer used for training.
    loss_fn_kwargs
        Kwargs for loss function.
    preprocess_fn
        Preprocessing function applied to each training batch.
    epochs
        Number of training epochs.
    batch_size
        Batch size used for training.
    buffer_size
        Maximum number of elements that will be buffered when prefetching.
    verbose
        Whether to print training progress.
    log_metric
        Additional metrics whose progress will be displayed if verbose equals True.
    callbacks
        Callbacks used during training.
    """
    # create dataset
    if y_train is None:  # unsupervised model without teacher forcing
        train_data = X_train
    else:
        train_data = (X_train, y_train)
    train_data = tf.data.Dataset.from_tensor_slices(train_data)
    train_data = train_data.shuffle(buffer_size=buffer_size).batch(batch_size)
    n_minibatch = int(np.ceil(X_train.shape[0] / batch_size))

    # iterate over epochs
    for epoch in range(epochs):
        if verbose:
            pbar = tf.keras.utils.Progbar(n_minibatch, 1)

        # iterate over the batches of the dataset
        for step, train_batch in enumerate(train_data):

            if y_train is None:
                X_train_batch = train_batch
            else:
                X_train_batch, y_train_batch = train_batch

            if isinstance(preprocess_fn, Callable):  # type: ignore
                X_train_batch = preprocess_fn(X_train_batch)

            with tf.GradientTape() as tape:
                preds = model(X_train_batch)

                if y_train is None:
                    ground_truth = X_train_batch
                else:
                    ground_truth = y_train_batch

                # compute loss
                if tf.is_tensor(preds):
                    args = [ground_truth, preds]
                else:
                    args = [ground_truth] + list(preds)

                if loss_fn_kwargs:
                    loss = loss_fn(*args, **loss_fn_kwargs)
                else:
                    loss = loss_fn(*args)

                if model.losses:  # additional model losses
                    loss += sum(model.losses)

            grads = tape.gradient(loss, model.trainable_weights)
            optimizer.apply_gradients(zip(grads, model.trainable_weights))

            if verbose:
                loss_val = loss.numpy()
                if loss_val.shape:
                    if loss_val.shape[0] != batch_size:
                        if len(loss_val.shape) == 1:
                            shape = (batch_size - loss_val.shape[0], )
                        elif len(loss_val.shape) == 2:
                            shape = (batch_size - loss_val.shape[0],
                                     loss_val.shape[1])  # type: ignore
                        add_mean = np.ones(shape) * loss_val.mean()
                        loss_val = np.r_[loss_val, add_mean]
                pbar_values = [('loss', loss_val)]
                if log_metric is not None:
                    log_metric[1](ground_truth, preds)
                    pbar_values.append(
                        (log_metric[0], log_metric[1].result().numpy()))
                pbar.add(1, values=pbar_values)
def trainer(model: tf.keras.Model,
            loss_fn: tf.keras.losses,
            X_train: np.ndarray,
            y_train: np.ndarray = None,
            optimizer: tf.keras.optimizers = tf.keras.optimizers.Adam(
                learning_rate=1e-3),
            loss_fn_kwargs: dict = None,
            epochs: int = 100,
            batch_size: int = 1,
            buffer_size: int = 1024,
            shuffle: bool = False,
            verbose: bool = True) -> None:
    """
    Train TensorFlow model.

    Parameters
    ----------
    model
        Model to train.
    loss_fn
        Loss function used for training.
    X_train
        Training batch.
    y_train
        Training labels.
    optimizer
        Optimizer used for training.
    loss_fn_kwargs
        Kwargs for loss function.
    epochs
        Number of training epochs.
    batch_size
        Batch size used for training.
    buffer_size
        Maximum number of elements that will be buffered when prefetching.
    shuffle
        Whether to shuffle training data.
    verbose
        Whether to print training progress.
    """
    # create dataset
    if y_train is None:  # unsupervised model
        train_data = X_train
    else:
        train_data = (X_train, y_train)
    train_data = tf.data.Dataset.from_tensor_slices(train_data)
    if shuffle:
        train_data = train_data.shuffle(
            buffer_size=buffer_size).batch(batch_size)
    n_minibatch = int(np.ceil(X_train.shape[0] / batch_size))

    # iterate over epochs
    for epoch in range(epochs):
        if verbose:
            pbar = tf.keras.utils.Progbar(n_minibatch, 1)

        # iterate over the batches of the dataset
        for step, train_batch in enumerate(train_data):

            if y_train is None:
                X_train_batch = train_batch
            else:
                X_train_batch, y_train_batch = train_batch

            with tf.GradientTape() as tape:
                preds = model(X_train_batch)

                if y_train is None:
                    ground_truth = X_train_batch
                else:
                    ground_truth = y_train_batch

                # compute loss
                if tf.is_tensor(preds):
                    args = [ground_truth, preds]
                else:
                    args = [ground_truth] + list(preds)

                if loss_fn_kwargs:
                    loss = loss_fn(*args, **loss_fn_kwargs)
                else:
                    loss = loss_fn(*args)

                if model.losses:  # additional model losses
                    loss += sum(model.losses)

            grads = tape.gradient(loss, model.trainable_weights)
            optimizer.apply_gradients(zip(grads, model.trainable_weights))

            if verbose:
                loss_val = loss.numpy().mean()
                pbar_values = [('loss', loss_val)]
                pbar.add(1, values=pbar_values)
Example #9
0
def update_weights(optimizer: tf.keras.optimizers, network: BaseNetwork, batch):
    def scale_gradient(tensor, scale: float):
        """Trick function to scale the gradient in tensorflow"""
        return (1. - scale) * tf.stop_gradient(tensor) + scale * tensor

    def loss():

        loss = 0
        image_batch, targets_init_batch, targets_time_batch, actions_time_batch, \
        mask_time_batch, dynamic_mask_time_batch = batch

        # make initial step from the real observation: representation + prediction networks
        representation_batch, value_batch, policy_batch = network.initial_model(np.array(image_batch))

        # Only update the element with a policy target
        target_value_batch, _, target_policy_batch = zip(*targets_init_batch)
        mask_policy = list(map(lambda l: bool(l), target_policy_batch))
        target_policy_batch = list(filter(lambda l: bool(l), target_policy_batch))
        policy_batch = tf.boolean_mask(policy_batch, mask_policy)

        # Compute the loss of the first pass
        value_support_size = len(value_batch[0])
        loss += tf.math.reduce_mean(loss_value(target_value_batch, value_batch, value_support_size))
        loss += tf.math.reduce_mean(
            tf.nn.softmax_cross_entropy_with_logits(logits=policy_batch, labels=target_policy_batch))

        # Recurrent steps, from action and previous hidden state.
        for actions_batch, targets_batch, mask, dynamic_mask in zip(actions_time_batch, targets_time_batch,
                                                                    mask_time_batch, dynamic_mask_time_batch):
            target_value_batch, target_reward_batch, target_policy_batch = zip(*targets_batch)

            # Only execute BPTT for elements with an action
            representation_batch = tf.boolean_mask(representation_batch, dynamic_mask)
            target_value_batch = tf.boolean_mask(target_value_batch, mask)
            target_reward_batch = tf.boolean_mask(target_reward_batch, mask)
            # Creating conditioned_representation: concatenate representations with actions batch
            actions_batch = tf.one_hot(actions_batch, network.action_size)

            # Recurrent step from conditioned representation: recurrent + prediction networks
            conditioned_representation_batch = tf.concat((representation_batch, actions_batch), axis=1)
            representation_batch, reward_batch, value_batch, policy_batch = network.recurrent_model(
                conditioned_representation_batch)

            # Only execute BPTT for elements with a policy target
            target_policy_batch = [policy for policy, b in zip(target_policy_batch, mask) if b]
            mask_policy = list(map(lambda l: bool(l), target_policy_batch))
            target_policy_batch = tf.convert_to_tensor([policy for policy in target_policy_batch if policy])
            policy_batch = tf.boolean_mask(policy_batch, mask_policy)

            # Compute the partial loss
            l = (tf.math.reduce_mean(loss_value(target_value_batch, value_batch, network.value_support_size)) +
                 MSE(target_reward_batch, tf.squeeze(reward_batch)) +
                 tf.math.reduce_mean(
                     tf.nn.softmax_cross_entropy_with_logits(logits=policy_batch, labels=target_policy_batch)))

            # Scale the gradient of the loss by the average number of actions unrolled
            gradient_scale = 1. / len(actions_time_batch)
            loss += scale_gradient(l, gradient_scale)

            # Half the gradient of the representation
            representation_batch = scale_gradient(representation_batch, 0.5)

        return loss

    optimizer.minimize(loss=loss, var_list=network.cb_get_variables())
    network.training_steps += 1
Example #10
0
def trainer(model: tf.keras.Model,
            loss_fn: tf.keras.losses,
            x_train: np.ndarray,
            y_train: np.ndarray = None,
            dataset: tf.keras.utils.Sequence = None,
            optimizer: tf.keras.optimizers = tf.keras.optimizers.Adam(
                learning_rate=1e-3),
            loss_fn_kwargs: dict = None,
            preprocess_fn: Callable = None,
            epochs: int = 20,
            reg_loss_fn: Callable = (lambda model: 0),
            batch_size: int = 64,
            buffer_size: int = 1024,
            verbose: bool = True,
            log_metric: Tuple[str, "tf.keras.metrics"] = None,
            callbacks: tf.keras.callbacks = None) -> None:
    """
    Train TensorFlow model.

    Parameters
    ----------
    model
        Model to train.
    loss_fn
        Loss function used for training.
    x_train
        Training data.
    y_train
        Training labels.
    dataset
        Training dataset which returns (x, y).
    optimizer
        Optimizer used for training.
    loss_fn_kwargs
        Kwargs for loss function.
    preprocess_fn
        Preprocessing function applied to each training batch.
    epochs
        Number of training epochs.
    reg_loss_fn
        Allows an additional regularisation term to be defined as reg_loss_fn(model)
    batch_size
        Batch size used for training.
    buffer_size
        Maximum number of elements that will be buffered when prefetching.
    verbose
        Whether to print training progress.
    log_metric
        Additional metrics whose progress will be displayed if verbose equals True.
    callbacks
        Callbacks used during training.
    """
    return_xy = False if not isinstance(
        dataset, tf.keras.utils.Sequence) and y_train is None else True
    if not isinstance(dataset, tf.keras.utils.Sequence):  # create dataset
        train_data = x_train if y_train is None else (x_train, y_train)
        dataset = tf.data.Dataset.from_tensor_slices(train_data)
        dataset = dataset.shuffle(buffer_size=buffer_size).batch(batch_size)
    n_minibatch = len(dataset)

    if loss_fn_kwargs:
        loss_fn = partial(loss_fn, **loss_fn_kwargs)

    # iterate over epochs
    for epoch in range(epochs):
        if verbose:
            pbar = tf.keras.utils.Progbar(n_minibatch, 1)
        if hasattr(dataset, 'on_epoch_end'):
            dataset.on_epoch_end()
        loss_val_ma = 0.
        for step, data in enumerate(dataset):
            x, y = data if return_xy else (data, None)
            if isinstance(preprocess_fn, Callable):  # type: ignore
                x = preprocess_fn(x)
            with tf.GradientTape() as tape:
                y_hat = model(x)
                y = x if y is None else y
                if isinstance(loss_fn, Callable):  # type: ignore
                    args = [y, y_hat
                            ] if tf.is_tensor(y_hat) else [y] + list(y_hat)
                    loss = loss_fn(*args)
                else:
                    loss = 0.
                if model.losses:  # additional model losses
                    loss += sum(model.losses)
                loss += reg_loss_fn(
                    model)  # alternative way they might be specified

            grads = tape.gradient(loss, model.trainable_weights)
            optimizer.apply_gradients(zip(grads, model.trainable_weights))
            if verbose:
                loss_val = loss.numpy()
                if loss_val.shape:
                    if loss_val.shape[0] != batch_size:
                        if len(loss_val.shape) == 1:
                            shape = (batch_size - loss_val.shape[0], )
                        elif len(loss_val.shape) == 2:
                            shape = (batch_size - loss_val.shape[0],
                                     loss_val.shape[1])  # type: ignore
                        add_mean = np.ones(shape) * loss_val.mean()
                        loss_val = np.r_[loss_val, add_mean]
                loss_val_ma = loss_val_ma + (loss_val - loss_val_ma) / (step +
                                                                        1)
                pbar_values = [('loss_ma', loss_val_ma)]
                if log_metric is not None:
                    log_metric[1](y, y_hat)
                    pbar_values.append(
                        (log_metric[0], log_metric[1].result().numpy()))
                pbar.add(1, values=pbar_values)
    def run(
        self,
        loss_fn: tf.keras.losses,
        optimizer: tf.keras.optimizers,
        batch_size: int,
        num_epoch: int,
        checkpoint=None,
    ):
        """Pretraining session."""
        logger.info("Creating datasets...")
        train_dataset = self.train_dataloader.create_dataset()
        valid_dataset = self.valid_dataloader.create_dataset()

        train_dataset = self.model.preprocessing(train_dataset)
        valid_dataset = self.model.preprocessing(valid_dataset)

        logger.info("Creating results directory...")

        directory = os.path.join(
            "results/" + self.model.title + "_mono",
            datetime.now().strftime("%Y-%m-%d %H:%M:%S"),
        )
        os.makedirs(directory, exist_ok=True)

        if checkpoint is not None:
            logger.info(f"Loading model {checkpoint}")
            self.model.load(str(checkpoint))
        else:
            checkpoint = 0

        logger.info("Beginning pretraining session...")

        for epoch in range(checkpoint + 1, num_epoch + 1):
            logger.debug(f"Epoch {epoch}...")

            for i, minibatch in enumerate(
                    train_dataset.padded_batch(
                        batch_size, padded_shapes=self.model.padded_shapes)):
                logger.debug(minibatch)
                with tf.GradientTape() as tape:
                    loss = self._step(minibatch,
                                      i,
                                      loss_fn,
                                      "train",
                                      training=True)
                    gradients = tape.gradient(loss,
                                              self.model.trainable_variables)
                    optimizer.apply_gradients(
                        zip(gradients, self.model.trainable_variables))
            logger.debug("Saving training loss")
            self.history.record("train_loss", self.losses["train"].result())

            for i, minibatch in enumerate(
                    valid_dataset.padded_batch(
                        batch_size, padded_shapes=self.model.padded_shapes)):
                loss = self._step(minibatch,
                                  i,
                                  loss_fn,
                                  "valid",
                                  training=False)

            logger.debug("Saving validation loss")
            self.history.record("valid_loss", self.losses["valid"].result())

            self.model.save(epoch)

            self.losses["train"].reset_states()
            self.losses["valid"].reset_states()
            self.history.save(directory + f"/history-{epoch}")
Example #12
0
def _calculate_and_apply_gradients(model: tf.keras.Sequential,
                                   optimizer: tf.keras.optimizers,
                                   gradient_tape: tf.GradientTape,
                                   loss: [float]):
    gradients = gradient_tape.gradient(loss, model.trainable_variables)
    optimizer.apply_gradients(zip(gradients, model.trainable_variables))
Example #13
0
def apply_gradients(optimizer: tf.keras.optimizers, gradients: tf.Tensor,
                    variables):
    optimizer.apply_gradients(zip(gradients, variables))