def __init__(self): super(Pose, self).__init__({ 'R': features.Tensor(shape=(3, 3), dtype=tf.float32), 't': features.Tensor(shape=(3, ), dtype=tf.float32), })
def __init__(self): super(TriangleMesh, self).__init__({ 'vertices': features.Tensor(shape=(None, 3), dtype=tf.float32), 'faces': features.Tensor(shape=(None, 3), dtype=tf.uint64), })
def _info(self): return tfds.core.DatasetInfo( builder=self, # This is the description that will appear on the datasets page. description=_DESCRIPTION, # tfds.features.FeatureConnectors features=tfds.features.FeaturesDict({ 'image': tfds_features.Image(shape=(None, None, 3), dtype=tf.uint8), 'image/filename': tfds_features.Text(), 'image/source': tfds_features.Text(), '2d_keypoints': tfds_features.FeaturesDict({ 'num_annotators': tf.uint8, 'num_keypoints': tf.uint8, 'keypoints': tfds_features.Tensor(shape=(None, ), dtype=tf.float32), }), 'mask': tfds_features.Image(shape=(None, None, 1), dtype=tf.uint8), 'model': tfg_features.TriangleMesh(), 'model/source': tfds_features.Text(), '3d_keypoints': tfds_features.Tensor(shape=(None, 3), dtype=tf.float32), 'voxel': tfg_features.VoxelGrid(shape=(128, 128, 128)), 'pose': tfg_features.Pose(), # pose of object w.r.t to world. 'camera': tfds_features.FeaturesDict({ 'parameters': tfg_features.Camera(), 'position_with_respect_to_object': tfds_features.Tensor(shape=(3, ), dtype=tf.float32), 'inplane_rotation': tf.float32, }), 'category': tfds_features.ClassLabel(num_classes=len(self.CLASS_INDEX)), 'bbox': tfds_features.BBoxFeature(), 'truncated': tf.bool, 'occluded': tf.bool, 'slightly_occluded': tf.bool, }), # If there's a common (input, target) tuple from the features, # specify them here. They'll be used if as_supervised=True in # builder.as_dataset. supervised_keys=None, # Homepage of the dataset for documentation homepage='http://pix3d.csail.mit.edu/', citation=_CITATION, )
def __init__(self): super(Camera, self).__init__({ 'pose': pose_feature.Pose(), 'intrinsics': features.Tensor(shape=(3, 3), dtype=tf.float32), })