Example #1
0
def _generate_simple_tensorflow(comp):
    """Naively generates TensorFlow to represent `comp`."""
    tf_parser_callable = tree_to_cc_transformations.TFParser()
    comp, _ = tree_transformations.insert_called_tf_identity_at_leaves(comp)
    comp, _ = transformation_utils.transform_postorder(comp,
                                                       tf_parser_callable)
    return comp
Example #2
0
 def _generate_simple_tensorflow(comp):
     tf_parser_callable = tree_to_cc_transformations.TFParser()
     comp, _ = tree_transformations.insert_called_tf_identity_at_leaves(
         comp)
     comp, _ = transformation_utils.transform_postorder(
         comp, tf_parser_callable)
     return comp
def parse_tff_to_tf(comp):
  comp, _ = tree_transformations.insert_called_tf_identity_at_leaves(comp)
  parser_callable = tree_to_cc_transformations.TFParser()
  comp, _ = tree_transformations.replace_called_lambda_with_block(comp)
  comp, _ = tree_transformations.inline_block_locals(comp)
  comp, _ = tree_transformations.replace_selection_from_tuple_with_element(comp)
  new_comp, transformed = transformation_utils.transform_postorder(
      comp, parser_callable)
  return new_comp, transformed
 def _count_ops_parameterized_by_layers(k):
     inlined_tuple_with_k_layers = _construct_inlined_tuple(k)
     tf_representing_block_with_k_layers, _ = transformations.remove_duplicate_called_graphs(
         inlined_tuple_with_k_layers)
     block_ops_with_k_layers = tree_analysis.count_tensorflow_ops_under(
         tf_representing_block_with_k_layers)
     parser_callable = tree_to_cc_transformations.TFParser()
     naively_generated_tf_with_k_layers, _ = transformation_utils.transform_postorder(
         inlined_tuple_with_k_layers, parser_callable)
     naive_ops_with_k_layers = tree_analysis.count_tensorflow_ops_under(
         naively_generated_tf_with_k_layers)
     return block_ops_with_k_layers, naive_ops_with_k_layers
Example #5
0
    def test_ops_not_duplicated_in_resulting_tensorflow(self):
        def _construct_block_and_inlined_tuple(k):
            concrete_int_type = computation_types.TensorType(tf.int32)
            concrete_int = building_block_factory.create_tensorflow_constant(
                concrete_int_type, 1)
            first_tf_id_type = computation_types.TensorType(tf.int32)
            first_tf_id = building_block_factory.create_compiled_identity(
                first_tf_id_type)
            called_tf_id = building_blocks.Call(first_tf_id, concrete_int)
            for _ in range(k):
                # Simulating large TF computation
                called_tf_id = building_blocks.Call(first_tf_id, called_tf_id)
            ref_to_call = building_blocks.Reference(
                'call', called_tf_id.type_signature)
            block_locals = [('call', called_tf_id)]
            block = building_blocks.Block(
                block_locals, building_blocks.Tuple([ref_to_call,
                                                     ref_to_call]))
            inlined_tuple = building_blocks.Tuple([called_tf_id, called_tf_id])
            return block, inlined_tuple

        block_with_5_ids, inlined_tuple_with_5_ids = _construct_block_and_inlined_tuple(
            5)
        block_with_10_ids, inlined_tuple_with_10_ids = _construct_block_and_inlined_tuple(
            10)
        tf_representing_block_with_5_ids, _ = transformations.create_tensorflow_representing_block(
            block_with_5_ids)
        tf_representing_block_with_10_ids, _ = transformations.create_tensorflow_representing_block(
            block_with_10_ids)
        block_ops_with_5_ids = tree_analysis.count_tensorflow_ops_under(
            tf_representing_block_with_5_ids)
        block_ops_with_10_ids = tree_analysis.count_tensorflow_ops_under(
            tf_representing_block_with_10_ids)

        parser_callable = tree_to_cc_transformations.TFParser()
        naively_generated_tf_with_5_ids, _ = transformation_utils.transform_postorder(
            inlined_tuple_with_5_ids, parser_callable)
        naively_generated_tf_with_10_ids, _ = transformation_utils.transform_postorder(
            inlined_tuple_with_10_ids, parser_callable)
        tuple_ops_with_5_ids = tree_analysis.count_tensorflow_ops_under(
            naively_generated_tf_with_5_ids)
        tuple_ops_with_10_ids = tree_analysis.count_tensorflow_ops_under(
            naively_generated_tf_with_10_ids)

        # asserting that block ops are linear in k with slope 1.
        self.assertEqual((block_ops_with_10_ids - block_ops_with_5_ids) / 5, 1)
        # asserting that tuple ops are linear in k with slope 2.
        self.assertEqual((tuple_ops_with_10_ids - tuple_ops_with_5_ids) / 5, 2)
Example #6
0
 def __init__(self):
   self._naive_tf_parser = tree_to_cc_transformations.TFParser()
Example #7
0
def remove_duplicate_called_graphs(comp):
  """Deduplicates called graphs for a subset of TFF AST constructs.

  Args:
    comp: Instance of `building_blocks.ComputationBuildingBlock` whose called
      graphs we wish to deduplicate, according to `tree_analysis.trees_equal`.
      For `comp` to be eligible here, it must be either a lambda itself whose
      body contains no lambdas or blocks, or another computation containing no
      lambdas or blocks. This restriction is necessary because
      `remove_duplicate_called_graphs` makes no effort to ensure that it is not
      pulling references out of their defining scope, except for the case where
      `comp` is a lambda itself. This function exits early and logs a warning if
      this assumption is violated. Additionally, `comp` must contain only
      computations which can be represented in TensorFlow, IE, satisfy the type
      restriction in `type_analysis.is_tensorflow_compatible_type`.

  Returns:
    Either a called instance of `building_blocks.CompiledComputation` or a
    `building_blocks.CompiledComputation` itself, depending on whether `comp`
    is of non-functional or functional type respectively. Additionally, returns
    a boolean to match the `transformation_utils.TransformSpec` pattern.
  """
  py_typecheck.check_type(comp, building_blocks.ComputationBuildingBlock)
  tree_analysis.check_has_unique_names(comp)
  name_generator = building_block_factory.unique_name_generator(comp)
  if comp.is_lambda():
    comp_to_check = comp.result
  else:
    comp_to_check = comp
  if tree_analysis.contains_types(comp_to_check, (
      building_blocks.Block,
      building_blocks.Lambda,
  )):
    logging.warning(
        'The preprocessors have failed to remove called lambdas '
        'and blocks; falling back to less efficient, but '
        'guaranteed, TensorFlow generation with computation %s.', comp)
    return comp, False

  leaf_called_graphs = []

  def _pack_called_graphs_into_block(inner_comp):
    """Packs deduplicated bindings to called graphs in `leaf_called_graphs`."""
    if inner_comp.is_call() and inner_comp.function.is_compiled_computation():
      for (name, x) in leaf_called_graphs:
        if tree_analysis.trees_equal(x, inner_comp):
          return building_blocks.Reference(name,
                                           inner_comp.type_signature), True
      new_name = next(name_generator)
      leaf_called_graphs.append((new_name, inner_comp))
      return building_blocks.Reference(new_name,
                                       inner_comp.type_signature), True

    return inner_comp, False

  if comp.is_lambda():
    transformed_result, _ = transformation_utils.transform_postorder(
        comp.result, _pack_called_graphs_into_block)
    packed_into_block = building_blocks.Block(leaf_called_graphs,
                                              transformed_result)
    parsed, _ = create_tensorflow_representing_block(packed_into_block)
    tff_func = building_blocks.Lambda(comp.parameter_name, comp.parameter_type,
                                      parsed)
    tf_parser_callable = tree_to_cc_transformations.TFParser()
    comp, _ = tree_transformations.insert_called_tf_identity_at_leaves(tff_func)
    tf_generated, _ = transformation_utils.transform_postorder(
        comp, tf_parser_callable)
  else:
    transformed_result, _ = transformation_utils.transform_postorder(
        comp, _pack_called_graphs_into_block)
    packed_into_block = building_blocks.Block(leaf_called_graphs,
                                              transformed_result)
    tf_generated, _ = create_tensorflow_representing_block(packed_into_block)
  return tf_generated, True