def test_ngrams_broadscast(self): block = tdb.Scalar() >> tdb.Broadcast() >> tdb.NGrams(2) self.assertBuildsConst(itertools.repeat((42., 42.)), block, 42)
def test_zip_all_broadcast(self): block = {'x': tdb.Scalar() >> tdb.Broadcast(), 'y': tdb.Scalar() >> tdb.Broadcast()} >> tdb.Zip() self.assertBuildsConst(itertools.repeat((1., 2.)), block, {'x': 1, 'y': 2})
def test_broadcast_zip_map(self): block = ({'x': tdb.Scalar() >> tdb.Broadcast(), 'y': tdb.Map(tdb.Scalar())} >> tdb.Zip() >> tdb.Map(tdb.Function(tf.add))) self.assertBuilds([3., 4., 5.], block, {'x': 2, 'y': [1, 2, 3]})
def test_zip_some_broadcast(self): block = {'x': tdb.Map(tdb.Scalar()), 'y': tdb.Scalar() >> tdb.Broadcast()} >> tdb.Zip() self.assertBuildsConst([(1., 3.), (2., 3.)], block, {'x': [1, 2], 'y': 3})
def test_broadcast_map(self): block = tdb.Scalar() >> tdb.Broadcast() >> tdb.Map( tdb.Function(tf.negative)) self.assertBuilds(itertools.repeat(-42.), block, 42)
def test_broadcast(self): block = tdb.Scalar() >> tdb.Broadcast() self.assertBuildsConst(itertools.repeat(42.), block, 42)
def test_slice_raises(self): six.assertRaisesRegex( self, TypeError, 'infinite sequence', tdb.Pipe, (tdb.Scalar() >> tdb.Broadcast()), tdb.Slice(stop=3))
def test_repr(self): goldens = { tdb.Tensor([]): '<td.Tensor dtype=\'float32\' shape=()>', tdb.Tensor([1, 2], 'int32', name='foo'): '<td.Tensor \'foo\' dtype=\'int32\' shape=(1, 2)>', tdb.Scalar('int64'): '<td.Scalar dtype=\'int64\'>', tdb.Vector(42): '<td.Vector dtype=\'float32\' size=42>', tdb.FromTensor(tf.zeros(3)): '<td.FromTensor \'zeros:0\'>', tdb.Function(tf.negative, name='foo'): '<td.Function \'foo\' tf_fn=\'negative\'>', tdb.Identity(): '<td.Identity>', tdb.Identity('foo'): '<td.Identity \'foo\'>', tdb.InputTransform(ord): '<td.InputTransform py_fn=\'ord\'>', tdb.SerializedMessageToTree('foo'): '<td.SerializedMessageToTree \'foo\' ' 'py_fn=\'serialized_message_to_tree\'>', tdb.GetItem(3, 'mu'): '<td.GetItem \'mu\' key=3>', tdb.Length(): '<td.Length dtype=\'float32\'>', tdb.Slice(stop=2): '<td.Slice key=slice(None, 2, None)>', tdb.Slice(stop=2, name='x'): '<td.Slice \'x\' key=slice(None, 2, None)>', tdb.ForwardDeclaration(name='foo')(): '<td.ForwardDeclaration() \'foo\'>', tdb.Composition(name='x').input: '<td.Composition.input \'x\'>', tdb.Composition(name='x').output: '<td.Composition.output \'x\'>', tdb.Composition(name='x'): '<td.Composition \'x\'>', tdb.Pipe(): '<td.Pipe>', tdb.Pipe(tdb.Scalar(), tdb.Identity()): '<td.Pipe>', tdb.Record({}, name='x'): '<td.Record \'x\' ordered=False>', tdb.Record((), name='x'): '<td.Record \'x\' ordered=True>', tdb.AllOf(): '<td.AllOf>', tdb.AllOf(tdb.Identity()): '<td.AllOf>', tdb.AllOf(tdb.Identity(), tdb.Identity()): '<td.AllOf>', tdb.AllOf(name='x'): '<td.AllOf \'x\'>', tdb.AllOf(tdb.Identity(), name='x'): '<td.AllOf \'x\'>', tdb.AllOf(tdb.Identity(), tdb.Identity(), name='x'): '<td.AllOf \'x\'>', tdb.Map(tdb.Scalar(), name='x'): '<td.Map \'x\' element_block=<td.Scalar dtype=\'float32\'>>', tdb.Fold(tdb.Function(tf.add), tf.ones([]), name='x'): '<td.Fold \'x\' combine_block=<td.Function tf_fn=\'add\'> ' 'start_block=<td.FromTensor \'ones:0\'>>', tdb.RNN(tdl.ScopedLayer(tf.contrib.rnn.GRUCell(num_units=8))): '<td.RNN>', tdb.RNN(tdl.ScopedLayer(tf.contrib.rnn.GRUCell(num_units=8)), name='x'): '<td.RNN \'x\'>', tdb.RNN(tdl.ScopedLayer(tf.contrib.rnn.GRUCell(num_units=8)), initial_state=tf.ones(8)): '<td.RNN>', tdb.RNN(tdl.ScopedLayer(tf.contrib.rnn.GRUCell(num_units=8)), initial_state=tf.ones(8), name='x'): '<td.RNN \'x\'>', tdb.Reduce(tdb.Function(tf.add), name='x'): '<td.Reduce \'x\' combine_block=<td.Function tf_fn=\'add\'>>', tdb.Sum(name='foo'): '<td.Sum \'foo\' combine_block=<td.Function tf_fn=\'add\'>>', tdb.Min(name='foo'): '<td.Min \'foo\' combine_block=<td.Function tf_fn=\'minimum\'>>', tdb.Max(name='foo'): '<td.Max \'foo\' combine_block=<td.Function tf_fn=\'maximum\'>>', tdb.Mean(name='foo'): '<td.Mean \'foo\'>', tdb.OneOf(ord, (tdb.Scalar(), tdb.Scalar()), name='x'): '<td.OneOf \'x\'>', tdb.Optional(tdb.Scalar(), name='foo'): '<td.Optional \'foo\' some_case_block=<td.Scalar dtype=\'float32\'>>', tdb.Concat(1, True, 'x'): '<td.Concat \'x\' concat_dim=1 flatten=True>', tdb.Broadcast(name='x'): '<td.Broadcast \'x\'>', tdb.Zip(name='x'): '<td.Zip \'x\'>', tdb.NGrams(n=42, name='x'): '<td.NGrams \'x\' n=42>', tdb.OneHot(2, 3, name='x'): '<td.OneHot \'x\' dtype=\'float32\' start=2 stop=3>', tdb.OneHot(3): '<td.OneHot dtype=\'float32\' start=0 stop=3>', tdb.OneHotFromList(['a', 'b']): '<td.OneHotFromList>', tdb.OneHotFromList(['a', 'b'], name='foo'): '<td.OneHotFromList \'foo\'>', tdb.Nth(name='x'): '<td.Nth \'x\'>', tdb.Zeros([], 'x'): '<td.Zeros \'x\'>', tdb.Void(): '<td.Void>', tdb.Void('foo'): '<td.Void \'foo\'>', tdm.Metric('foo'): '<td.Metric \'foo\'>'} for block, expected_repr in sorted(six.iteritems(goldens), key=lambda kv: kv[1]): self.assertEqual(repr(block), expected_repr)