def testScalarCongruency(self): bijector_test_util.assert_scalar_congruency(tfb.GompertzCDF( concentration=0.2, rate=0.2), lower_x=1., upper_x=10., eval_func=self.evaluate, rtol=0.05)
def testVariableRate(self): x = tf.Variable(1.) b = tfb.GompertzCDF(concentration=1., rate=x, validate_args=True) self.evaluate(x.initializer) self.assertIs(x, b.rate) self.assertEqual((), self.evaluate(b.forward(1.)).shape) with self.assertRaisesOpError("Argument `rate` must be positive."): with tf.control_dependencies([x.assign(-1.)]): self.evaluate(b.forward(1.))
def testBijectiveAndFinite(self): bijector = tfb.GompertzCDF(concentration=1., rate=0.01, validate_args=True) x = np.logspace(-10, 2, num=10).astype(np.float32) y = np.linspace(0.01, 0.99, num=10).astype(np.float32) bijector_test_util.assert_bijective_and_finite(bijector, x, y, eval_func=self.evaluate, event_ndims=0, rtol=1e-3)
def testBijector(self): concentration = 0.3 rate = 1. bijector = tfb.GompertzCDF(concentration=concentration, rate=rate, validate_args=True) self.assertStartsWith(bijector.name, "gompertz") x = np.array([[[0.1], [0.5], [1.4], [3.]]], dtype=np.float32) # Gompertz distribution gompertz_dist = stats.gompertz(c=concentration, scale=1. / rate) y = gompertz_dist.cdf(x).astype(np.float32) self.assertAllClose(y, self.evaluate(bijector.forward(x))) self.assertAllClose(x, self.evaluate(bijector.inverse(y))) self.assertAllClose( np.squeeze(gompertz_dist.logpdf(x), axis=-1), self.evaluate(bijector.forward_log_det_jacobian(x, event_ndims=1))) self.assertAllClose( self.evaluate( -bijector.inverse_log_det_jacobian(y, event_ndims=1)), self.evaluate(bijector.forward_log_det_jacobian(x, event_ndims=1)), rtol=1e-4, atol=0.)