Example #1
0
    def adjacent_swaps(num_replica,
                       batch_shape=(),
                       step_count=None,
                       seed=None):
        """Make random shuffle using only one time swaps."""
        del step_count  # Unused for this function.
        with tf.name_scope(name or 'adjacent_swaps'):
            parity_seed, proposal_seed = samplers.split_seed(seed)
            # u selects parity.  E.g.,
            #  u==False ==> [1, 0, 3, 2, 4] even parity swaps
            #  u==True ==>  [0, 2, 1, 4, 3] odd parity swaps
            # If there are only 2 replicas, then the "True" swaps are null
            # swaps...which would contradict the user provided `prob_swap`.
            # So special case num_replica==2, forcing u==False in this case.
            u_shape = ps.concat(
                (ps.ones(1, dtype=tf.int32), ps.cast(batch_shape, tf.int32)),
                axis=0)
            u = samplers.uniform(u_shape, seed=parity_seed) < 0.5
            u = tf.where(num_replica > 2, u, False)

            x = bu.left_justified_expand_dims_to(ps.range(num_replica,
                                                          dtype=tf.int64),
                                                 rank=ps.size(u_shape))
            y = tf.where(tf.equal(x % 2, tf.cast(u, dtype=tf.int64)), x + 1,
                         x - 1)
            y = tf.clip_by_value(y, 0, num_replica - 1)
            # TODO(b/142689785): Consider using tf.cond and returning an empty list
            # then in REMC consider using a tf.cond for short-circuiting.
            return tf.where(
                samplers.uniform(batch_shape, seed=proposal_seed) < prob_swap,
                y, x)
Example #2
0
    def even_odd_swaps(num_replica,
                       batch_shape=(),
                       step_count=None,
                       seed=None):
        """Make deterministic even_odd one time swaps."""
        if step_count is None:
            raise ValueError('`step_count` must be supplied. Found `None`.')
        del seed  # Unused for this function.
        with tf.name_scope(name or 'even_odd_swaps'):
            # Period is 1 / frequency, and we want period = Inf if frequency = 0.
            # safe_swap_period is the correct swap period in case swap_frequency > 0.
            # If swap_frequency == 0, safe_swap_period is set to 1 (to avoid integer
            # div by zero below). We will hard-set this case to "null swap."
            swap_freq = tf.convert_to_tensor(swap_frequency,
                                             name='swap_frequency')
            safe_swap_period = tf.cast(
                tf.where(swap_freq > 0,
                         tf.math.ceil(tf.math.reciprocal_no_nan(swap_freq)),
                         1),
                # Although period = 1 / frequency may have roundoff error, and result
                # in a period different than what the user intended, the
                # user will end up with a single integer period, and thus well defined
                # deterministic swaps.
                tf.int32,
            )

            # u selects parity.  E.g.,
            #  u==False ==> [1, 0, 3, 2, 4] even parity swaps
            #  u==True ==>  [0, 2, 1, 4, 3] odd parity swaps
            # If there are 2 replicas, then the "True" swaps are null
            # swaps...which would contradict the user provided `swap_frequency`.
            # So special case num_replica==2, forcing u==False in this case.
            u_shape = ps.concat(
                (ps.ones(1, dtype=tf.int32), ps.cast(batch_shape, tf.int32)),
                axis=0)
            u = tf.fill(u_shape,
                        tf.cast((step_count // safe_swap_period) % 2, tf.bool))
            u = tf.where(num_replica > 2, u, False)

            x = bu.left_justified_expand_dims_to(tf.range(num_replica,
                                                          dtype=tf.int64),
                                                 rank=ps.size(u_shape))
            y = tf.where(tf.equal(x % 2, tf.cast(u, dtype=tf.int64)), x + 1,
                         x - 1)
            y = tf.clip_by_value(y, 0, num_replica - 1)
            # TODO(b/142689785): Consider using tf.cond and returning an empty list
            # then in REMC consider using a tf.cond for short-circuiting.
            return tf.where(
                (tf.cast(step_count % safe_swap_period, tf.bool)
                 | tf.math.equal(swap_freq, 0)),
                x,  # Don't swap
                y,  # Swap
            )
Example #3
0
    def one_step(self, current_state, previous_kernel_results, seed=None):
        """Takes one step of the TransitionKernel.

    Args:
      current_state: `Tensor` or Python `list` of `Tensor`s representing the
        current state(s) of the Markov chain(s).
      previous_kernel_results: A (possibly nested) `tuple`, `namedtuple` or
        `list` of `Tensor`s representing internal calculations made within the
        previous call to this function (or as returned by `bootstrap_results`).
      seed: Optional, a seed for reproducible sampling.

    Returns:
      next_state: `Tensor` or Python `list` of `Tensor`s representing the
        next state(s) of the Markov chain(s).
      kernel_results: A (possibly nested) `tuple`, `namedtuple` or `list` of
        `Tensor`s representing internal calculations made within this function.
        This inculdes replica states.
    """

        # The code below propagates one step states of shape
        #  [n_replica] + batch_shape + event_shape.
        #
        # The step is done in three parts:
        #  1) Call one_step to transition states via a tempered version of
        #     self.target_log_prob_fn (see _replica_target_log_prob).
        #  2) Permute values in states
        #  3) Update state-dependent values, such as log_probs.
        #
        # We chose to swap states, rather than temperatures, because...
        # (i)  If swapping temperatures, you *still* have to swap log_probs to
        #      determine acceptance, as well as states (for kernel results).
        #      So it's just as difficult to swap temperatures.
        # (ii) If swapping temperatures, you have to take care to swap any user-
        #      supplied temperature related things (like step size).
        #      A-priori, we don't know what else will need to be swapped!
        # (iii)In both cases, the kernel results need to be updated in a non-trivial
        #      manner....so we either special-case, or use bootstrap.

        with tf.name_scope(mcmc_util.make_name(self.name, 'remc', 'one_step')):
            # Force a read in case the `inverse_temperatures` is a `tf.Variable`.
            inverse_temperatures = tf.convert_to_tensor(
                previous_kernel_results.inverse_temperatures,
                name='inverse_temperatures')

            target_log_prob_for_inner_kernel = _make_replica_target_log_prob_fn(
                target_log_prob_fn=self.target_log_prob_fn,
                inverse_temperatures=inverse_temperatures,
                untempered_log_prob_fn=self.untempered_log_prob_fn,
                tempered_log_prob_fn=self.tempered_log_prob_fn,
            )
            # TODO(b/159636942): Clean up the helpful error msg after 2020-11-10.
            try:
                inner_kernel = self.make_kernel_fn(  # pylint: disable=not-callable
                    target_log_prob_for_inner_kernel)
            except TypeError as e:
                if 'argument' not in str(e):
                    raise
                raise TypeError(
                    '`ReplicaExchangeMC`s `make_kernel_fn` no longer receives a `seed` '
                    'argument. `TransitionKernel` instances now receive seeds via '
                    '`one_step`.')

            seed = samplers.sanitize_seed(seed)  # Retain for diagnostics.
            inner_seed, swap_seed, logu_seed = samplers.split_seed(seed, n=3)
            # Step the inner TransitionKernel.
            [
                pre_swap_replica_states,
                pre_swap_replica_results,
            ] = inner_kernel.one_step(
                previous_kernel_results.post_swap_replica_states,
                previous_kernel_results.post_swap_replica_results,
                seed=inner_seed)

            pre_swap_replica_target_log_prob = _get_field(
                # These are tempered log probs (have been divided by temperature).
                pre_swap_replica_results,
                'target_log_prob')

            dtype = pre_swap_replica_target_log_prob.dtype
            replica_and_batch_shape = ps.shape(
                pre_swap_replica_target_log_prob)
            batch_shape = replica_and_batch_shape[1:]
            replica_and_batch_rank = ps.rank(pre_swap_replica_target_log_prob)
            num_replica = ps.size0(inverse_temperatures)

            inverse_temperatures = bu.left_justified_broadcast_to(
                inverse_temperatures, replica_and_batch_shape)

            # Now that each replica has done one_step, it is time to consider swaps.

            # swap.shape = [n_replica], and is a "once only" permutation, meaning it
            # is achievable by a sequence of pairwise permutations, where each element
            # is moved at most once.
            # E.g. if swaps = [1, 0, 2], we will consider swapping temperatures 0 and
            # 1, keeping 2 fixed.  This exact same swap is considered for *every*
            # batch member.  Of course some batch members may accept and some reject.
            try:
                swaps = tf.cast(
                    self.swap_proposal_fn(  # pylint: disable=not-callable
                        num_replica,
                        batch_shape=batch_shape,
                        seed=swap_seed,
                        step_count=previous_kernel_results.step_count),
                    dtype=tf.int32)
            except TypeError as e:
                if 'step_count' not in str(e):
                    raise
                warnings.warn(
                    'The `swap_proposal_fn` given to ReplicaExchangeMC did not accept '
                    'the `step_count` argument. Falling back to omitting the '
                    'argument. This fallback will be removed after 24-Oct-2020.'
                )
                swaps = tf.cast(
                    self.swap_proposal_fn(  # pylint: disable=not-callable
                        num_replica,
                        batch_shape=batch_shape,
                        seed=swap_seed),
                    dtype=tf.int32)

            null_swaps = bu.left_justified_expand_dims_like(
                tf.range(num_replica, dtype=swaps.dtype), swaps)
            swaps = _maybe_embed_swaps_validation(swaps, null_swaps,
                                                  self.validate_args)

            # Un-temper the log probs for use in the swap acceptance ratio.
            if self.tempered_log_prob_fn is None:
                # Efficient way of re-evaluating target_log_prob_fn on the
                # pre_swap_replica_states.
                untempered_negative_energy_ignoring_ulp = (
                    # Since untempered_log_prob_fn is None, we may assume
                    # inverse_temperatures > 0 (else the target is improper).
                    pre_swap_replica_target_log_prob / inverse_temperatures)
            else:
                # The untempered_log_prob_fn does not factor into the acceptance ratio.
                # Proof: Suppose the tempered target is
                #   p_k(x) = f(x)^{beta_k} g(x),
                # So f(x) is tempered, and g(x) is not.  Then, the acceptance ratio for
                # a 1 <--> 2 swap is...
                #   (p_1(x_2) p_2(x_1)) / (p_1(x_1) p_2(x_2))
                # which depends only on f(x), since terms involving g(x) cancel.
                untempered_negative_energy_ignoring_ulp = self.tempered_log_prob_fn(
                    *pre_swap_replica_states)

            # Since `swaps` is its own inverse permutation we automatically know the
            # swap counterpart: range(num_replica). We use this idea to compute the
            # acceptance in a vectorized manner at the cost of wasting roughly half
            # our computation. Although we could use `unique` to solve this problem,
            # we expect the cost of `unique` to be higher than the dozens of wasted
            # arithmetic calculations. Worse, it'd mean we need dynamic sized Tensors
            # (eg, using `tf.where(bool)`) and so we wouldn't be able to XLA compile.

            # Note: diffs would normally be "proposed - current" however energy is
            # flipped since `energy == -log_prob`.
            # Note: The untempered_log_prob_fn (if provided) is not included in
            # untempered_pre_swap_replica_target_log_prob, and hence does not factor
            # into energy_diff. Why? Because, it cancels out in the acceptance ratio.
            energy_diff = (untempered_negative_energy_ignoring_ulp -
                           mcmc_util.index_remapping_gather(
                               untempered_negative_energy_ignoring_ulp,
                               swaps,
                               name='gather_swap_tlp'))
            swapped_inverse_temperatures = mcmc_util.index_remapping_gather(
                inverse_temperatures, swaps, name='gather_swap_temps')
            inverse_temp_diff = swapped_inverse_temperatures - inverse_temperatures

            # If i and j are swapping, log_accept_ratio[] i and j are equal.
            log_accept_ratio = (energy_diff * bu.left_justified_expand_dims_to(
                inverse_temp_diff, replica_and_batch_rank))

            log_accept_ratio = tf.where(tf.math.is_finite(log_accept_ratio),
                                        log_accept_ratio,
                                        tf.constant(-np.inf, dtype=dtype))

            # Produce log[Uniform] draws that are identical at swapped indices.
            log_uniform = tf.math.log(
                samplers.uniform(shape=replica_and_batch_shape,
                                 dtype=dtype,
                                 seed=logu_seed))
            anchor_swaps = tf.minimum(swaps, null_swaps)
            log_uniform = mcmc_util.index_remapping_gather(
                log_uniform, anchor_swaps)

            is_swap_accepted_mask = tf.less(log_uniform,
                                            log_accept_ratio,
                                            name='is_swap_accepted_mask')

            def _swap_tensor(x):
                return mcmc_util.choose(
                    is_swap_accepted_mask,
                    mcmc_util.index_remapping_gather(x, swaps), x)

            post_swap_replica_states = [
                _swap_tensor(s) for s in pre_swap_replica_states
            ]

            expanded_null_swaps = bu.left_justified_broadcast_to(
                null_swaps, replica_and_batch_shape)
            is_swap_proposed = _compute_swap_notmatrix(
                # Broadcast both so they have shape [num_replica] + batch_shape.
                # This (i) makes them have same shape as is_swap_accepted, and
                # (ii) keeps shape consistent if someday swaps has a batch shape.
                expanded_null_swaps,
                bu.left_justified_broadcast_to(swaps, replica_and_batch_shape))

            # To get is_swap_accepted in ordered position, we use
            # _compute_swap_notmatrix on current and next replica positions.
            post_swap_replica_position = _swap_tensor(expanded_null_swaps)

            is_swap_accepted = _compute_swap_notmatrix(
                post_swap_replica_position, expanded_null_swaps)

            if self._state_includes_replicas:
                post_swap_states = post_swap_replica_states
            else:
                post_swap_states = [s[0] for s in post_swap_replica_states]

            post_swap_replica_results = _set_swapped_fields_to_nan(
                _swap_log_prob_and_maybe_grads(pre_swap_replica_results,
                                               post_swap_replica_states,
                                               inner_kernel))

            if mcmc_util.is_list_like(current_state):
                # We *always* canonicalize the states in the kernel results.
                states = post_swap_states
            else:
                states = post_swap_states[0]

            post_swap_kernel_results = ReplicaExchangeMCKernelResults(
                post_swap_replica_states=post_swap_replica_states,
                pre_swap_replica_results=pre_swap_replica_results,
                post_swap_replica_results=post_swap_replica_results,
                is_swap_proposed=is_swap_proposed,
                is_swap_accepted=is_swap_accepted,
                is_swap_proposed_adjacent=_sub_diag(is_swap_proposed),
                is_swap_accepted_adjacent=_sub_diag(is_swap_accepted),
                # Store the original pkr.inverse_temperatures in case its a
                # `tf.Variable`.
                inverse_temperatures=previous_kernel_results.
                inverse_temperatures,
                swaps=swaps,
                step_count=previous_kernel_results.step_count + 1,
                seed=seed,
                potential_energy=-untempered_negative_energy_ignoring_ulp,
            )

            return states, post_swap_kernel_results
    def checkAllIntegrals(self, prior_scale, likelihood_scale,
                          inverse_temperatures, iid_chain_ndims):
        prior_scale = tf.convert_to_tensor(prior_scale, name='prior_scale')
        likelihood_scale = tf.convert_to_tensor(likelihood_scale,
                                                name='likelihood_scale')

        # Create (normalized) prior and likelihood. Their product of course is not
        # normalized. In particular, there is a number `normalizing_const` such that
        #   posterior(z) = prior.prob(x) * likelihood.prob(x) / normalizing_const
        # is normalized.
        prior = tfd.Normal(0., prior_scale)
        likelihood = tfd.Normal(0., likelihood_scale)
        posterior = tfd.Normal(0., (prior_scale**-2 +
                                    likelihood_scale**-2)**(-0.5))

        # Get a good step size, custom for every replica/batch member.
        bcast_inv_temperatures = bu.left_justified_expand_dims_to(
            inverse_temperatures,
            # Broadcast over replicas.
            1 +
            # Broadcast over chains.
            iid_chain_ndims +
            # Broadcast over batch dims.
            tf.rank(likelihood_scale))
        tempered_posteriors = tfd.Normal(
            0.,
            # One tempered posterior for every inverse_temperature.
            (prior_scale**-2 + bcast_inv_temperatures * likelihood_scale**-2
             )**(-0.5))
        step_size = 0.71234 * tempered_posteriors.stddev()

        num_leapfrog_steps = tf.cast(
            tf.math.ceil(1.567 / tf.reduce_min(step_size)), tf.int32)

        def make_kernel_fn(target_log_prob_fn):
            return tfp.mcmc.HamiltonianMonteCarlo(
                target_log_prob_fn=target_log_prob_fn,
                step_size=step_size,
                num_leapfrog_steps=num_leapfrog_steps,
            )

        remc = tfp.mcmc.ReplicaExchangeMC(
            target_log_prob_fn=None,
            untempered_log_prob_fn=prior.log_prob,
            tempered_log_prob_fn=likelihood.log_prob,
            inverse_temperatures=inverse_temperatures,
            state_includes_replicas=False,
            make_kernel_fn=make_kernel_fn,
            swap_proposal_fn=tfp.mcmc.even_odd_swap_proposal_fn(1.),
        )

        def trace_fn(state, results):  # pylint: disable=unused-argument
            return {
                'replica_log_accept_ratio':
                results.post_swap_replica_results.log_accept_ratio,
                'is_swap_accepted_adjacent': results.is_swap_accepted_adjacent,
                'is_swap_proposed_adjacent': results.is_swap_proposed_adjacent,
                'potential_energy': results.potential_energy,
            }

        if tf.executing_eagerly():
            num_results = 100
        else:
            num_results = 1000
        num_burnin_steps = num_results // 10

        n_samples_per_chain = 2
        initial_sample_shape = [n_samples_per_chain] * iid_chain_ndims

        unused_replica_states, trace = self.evaluate(
            tfp.mcmc.sample_chain(
                num_results=num_results,
                # Start at one of the modes, in order to make mode jumping necessary
                # if we want to pass test.
                current_state=prior.sample(initial_sample_shape,
                                           seed=test_util.test_seed()),
                kernel=remc,
                num_burnin_steps=num_burnin_steps,
                trace_fn=trace_fn,
                seed=test_util.test_seed()))

        # Tolerance depends on samples * replicas * number of (iid) chains.
        # ess.shape = [n_replica, ...]
        # We will sum over batch dims, then take min over replica.
        ess = tfp.mcmc.effective_sample_size(trace['potential_energy'])
        if iid_chain_ndims:
            ess = tf.reduce_sum(ess, axis=tf.range(1, 1 + iid_chain_ndims))
        min_ess = self.evaluate(tf.reduce_min(ess))

        n_combined_results = min_ess * inverse_temperatures.shape[0]

        # Make sure sampling worked well enough, for every replica/chain.
        conditional_swap_prob = (
            np.sum(trace['is_swap_accepted_adjacent'], axis=0) /
            np.sum(trace['is_swap_proposed_adjacent'], axis=0))
        self.assertAllGreater(conditional_swap_prob, 0.5)

        replica_mean_accept_prob = np.mean(np.exp(
            np.minimum(0, trace['replica_log_accept_ratio'])),
                                           axis=0)
        self.assertAllGreater(replica_mean_accept_prob, 0.5)

        integrals = self.evaluate(
            tfp.experimental.mcmc.remc_thermodynamic_integrals(
                inverse_temperatures,
                trace['potential_energy'],
                iid_chain_ndims=iid_chain_ndims,
            ))

        self.assertAllEqual(posterior.batch_shape,
                            integrals.log_normalizing_constant_ratio.shape)
        actual_log_normalizing_const = self.evaluate(
            # Use arbitrary point, 0, to find the constant.
            prior.log_prob(0.) + likelihood.log_prob(0.) -
            posterior.log_prob(0.))
        self.assertAllClose(integrals.log_normalizing_constant_ratio,
                            actual_log_normalizing_const,
                            rtol=10 / np.sqrt(n_combined_results))

        self.assertAllEqual(posterior.batch_shape,
                            integrals.cross_entropy_difference.shape)

        def cross_entropy(dist):
            z = dist.sample(50000, seed=test_util.test_seed())
            return tf.reduce_mean(likelihood.log_prob(z), axis=0)

        iid_cross_entropy_difference = self.evaluate(
            cross_entropy(posterior) - cross_entropy(prior))
        self.assertAllClose(integrals.cross_entropy_difference,
                            iid_cross_entropy_difference,
                            rtol=30 / np.sqrt(n_combined_results))