def preprocessing_fn(inputs): no2 = inputs['no2'] pm10 = inputs['pm10'] so2 = inputs['so2'] soot = inputs['soot'] no2_normalized = no2 - tftmean(no2) so2_normalized = so2 - tft.mean(so2) pm10_normalized = tft.scale_to_0_1(pm10) soot_normalized = tft.scale_by_min_max(soot) return { 'no2_normalized':no2_normalized, 'so2_normalized':so2_normalized, 'pm10_normalized':pm10__normalized, 'soot_normalized':soot_normalized }
def preprocessing_fn(inputs): """tf.transform's callback function for preprocessing inputs. Args: inputs: map from feature keys to raw not-yet-transformed features. Returns: Map from string feature key to transformed feature operations. """ outputs = {} # The input float values for the image encoding are in the range [-0.5, 0.5]. # So scale_by_min_max is a identity operation, since the range is preserved. outputs[transformed_name(IMAGE_KEY)] = ( tft.scale_by_min_max(inputs[IMAGE_KEY], -0.5, 0.5)) outputs[transformed_name(LABEL_KEY)] = inputs[LABEL_KEY] return outputs
def preprocessing_fn(inputs): no2 = inputs["no2"] pm10 = inputs["pm10"] so2 = inputs["so2"] soot = inputs["soot"] no2_normalized = no2 - tft.mean(no2) so2_normalized = so2 - tft.mean(so2) pm10_normalized = tft.scale_to_0_1(pm10) soot_normalized = tft.scale_by_min_max(soot) return { "no2_normalized": no2_normalized, "so2_normalized": so2_normalized, "pm10_normalized": pm10_normalized, "sott_normalized": soot_normalized }
def preprocessing_fn(inputs): """tf.transform's callback function for preprocessing inputs. Args: inputs: map from feature keys to raw not-yet-transformed features. Returns: Map from string feature key to transformed feature operations. """ outputs = {} # The input float values for the image encoding are in the range [-0.5, 0.5]. # So scale_by_min_max is a identity operation, since the range is preserved. outputs[transformed_name(IMAGE_KEY)] = (tft.scale_by_min_max( inputs[IMAGE_KEY], -0.5, 0.5)) # TODO(b/157064428): Support label transformation for Keras. # Do not apply label transformation as it will result in wrong evaluation. outputs[transformed_name(LABEL_KEY)] = inputs[LABEL_KEY] return outputs
def preprocessing_fn(inputs): # Define each column manually no2 = inputs['no2'] pm10 = inputs['pm10'] so2 = inputs['so2'] soot = inputs['soot'] # Normalize columns in preprocessing no2_normalized = no2 - tft.mean(no2) so2_normalized = so2 - tft.mean(so2) pm10_normalized = tft.scale_to_0_1(pm10) soot_normalized = tft.scale_by_min_max(soot) # Return the normalized columns in a dictionary return { "no2_normalized": no2_normalized, "so2_normalized": so2_normalized, "pm10_normalized": pm10_normalized, "soot_normalized": soot_normalized }