def preprocessing_fn(inputs):
    no2 = inputs['no2']
    pm10 = inputs['pm10']
    so2 = inputs['so2']
    soot = inputs['soot']
    
    no2_normalized = no2 - tftmean(no2)
    so2_normalized = so2 - tft.mean(so2)
    
    pm10_normalized = tft.scale_to_0_1(pm10)
    soot_normalized = tft.scale_by_min_max(soot)
    
    return {
            'no2_normalized':no2_normalized,
            'so2_normalized':so2_normalized,
            'pm10_normalized':pm10__normalized,
            'soot_normalized':soot_normalized
            }
def preprocessing_fn(inputs):
  """tf.transform's callback function for preprocessing inputs.

  Args:
    inputs: map from feature keys to raw not-yet-transformed features.

  Returns:
    Map from string feature key to transformed feature operations.
  """
  outputs = {}

  # The input float values for the image encoding are in the range [-0.5, 0.5].
  # So scale_by_min_max is a identity operation, since the range is preserved.
  outputs[transformed_name(IMAGE_KEY)] = (
      tft.scale_by_min_max(inputs[IMAGE_KEY], -0.5, 0.5))
  outputs[transformed_name(LABEL_KEY)] = inputs[LABEL_KEY]

  return outputs
def preprocessing_fn(inputs):
    no2 = inputs["no2"]
    pm10 = inputs["pm10"]
    so2 = inputs["so2"]
    soot = inputs["soot"]

    no2_normalized = no2 - tft.mean(no2)
    so2_normalized = so2 - tft.mean(so2)

    pm10_normalized = tft.scale_to_0_1(pm10)
    soot_normalized = tft.scale_by_min_max(soot)

    return {
        "no2_normalized": no2_normalized,
        "so2_normalized": so2_normalized,
        "pm10_normalized": pm10_normalized,
        "sott_normalized": soot_normalized
    }
def preprocessing_fn(inputs):
    """tf.transform's callback function for preprocessing inputs.

  Args:
    inputs: map from feature keys to raw not-yet-transformed features.

  Returns:
    Map from string feature key to transformed feature operations.
  """
    outputs = {}

    # The input float values for the image encoding are in the range [-0.5, 0.5].
    # So scale_by_min_max is a identity operation, since the range is preserved.
    outputs[transformed_name(IMAGE_KEY)] = (tft.scale_by_min_max(
        inputs[IMAGE_KEY], -0.5, 0.5))
    # TODO(b/157064428): Support label transformation for Keras.
    # Do not apply label transformation as it will result in wrong evaluation.
    outputs[transformed_name(LABEL_KEY)] = inputs[LABEL_KEY]

    return outputs
def preprocessing_fn(inputs):
    # Define each column manually
    no2 = inputs['no2']
    pm10 = inputs['pm10']
    so2 = inputs['so2']
    soot = inputs['soot']

    # Normalize columns in preprocessing
    no2_normalized = no2 - tft.mean(no2)
    so2_normalized = so2 - tft.mean(so2)
    pm10_normalized = tft.scale_to_0_1(pm10)
    soot_normalized = tft.scale_by_min_max(soot)

    # Return the normalized columns in a dictionary
    return {
        "no2_normalized": no2_normalized,
        "so2_normalized": so2_normalized,
        "pm10_normalized": pm10_normalized,
        "soot_normalized": soot_normalized
    }