def conv1d_sd(input, filters, image_shape, filter_shape, border_mode='valid', subsample=(1,), filter_flip=True): """ using a single dot product """ if border_mode not in ('valid', 0, (0,)): raise RuntimeError("Unsupported border_mode for conv1d_sd: " "%s" % border_mode) batch_size, num_input_channels, input_length = image_shape num_filters, num_input_channels_, filter_length = filter_shape stride = subsample[0] if filter_length % stride > 0: raise RuntimeError("Filter length (%d) is not a multiple of the " "stride (%d)" % (filter_length, stride)) num_steps = filter_length // stride output_length = (input_length - filter_length + stride) // stride # pad the input so all the shifted dot products fit inside. # shape is (b, c, l) padded_length = ((input_length // filter_length) * filter_length + (num_steps - 1) * stride) # at this point, it is possible that the padded_length is SMALLER than the # input size. so then we have to truncate first. truncated_length = min(input_length, padded_length) input_truncated = input[:, :, :truncated_length] input_padded_shape = (batch_size, num_input_channels, padded_length) input_padded = T.zeros(input_padded_shape) input_padded = T.set_subtensor(input_padded[:, :, :truncated_length], input_truncated) inputs = [] for num in range(num_steps): shift = num * stride length = (padded_length - shift) // filter_length r_input_shape = (batch_size, num_input_channels, length, filter_length) r_input = input_padded[ :, :, shift:length * filter_length + shift].reshape(r_input_shape) inputs.append(r_input) inputs_stacked = T.stack(*inputs) # shape is (n, b, c, w, f) filters_flipped = filters[:, :, ::-1] if filter_flip else filters r_conved = T.tensordot(inputs_stacked, filters_flipped, np.asarray([[2, 4], [1, 2]])) # resulting shape is (n, b, w, n_filters) # output needs to be (b, n_filters, w * n) r_conved = r_conved.dimshuffle(1, 3, 2, 0) # (b, n_filters, w, n) conved = r_conved.reshape((r_conved.shape[0], r_conved.shape[1], r_conved.shape[2] * r_conved.shape[3])) # result is (b, n_f, l) # remove padding return conved[:, :, :output_length]
def conv1d_md(input, filters, image_shape, filter_shape, border_mode='valid', subsample=(1,), filter_flip=True): """ using multiple dot products """ if border_mode not in ('valid', 0, (0,)): raise RuntimeError("Unsupported border_mode for conv1d_md: " "%s" % border_mode) batch_size, num_input_channels, input_length = image_shape num_filters, num_input_channels_, filter_length = filter_shape stride = subsample[0] if filter_length % stride > 0: raise RuntimeError("Filter length (%d) is not a multiple of the " "stride (%d)" % (filter_length, stride)) num_steps = filter_length // stride output_length = (input_length - filter_length + stride) // stride output_shape = (batch_size, num_filters, output_length) filters_flipped = filters[:, :, ::-1] if filter_flip else filters conved = T.zeros(output_shape) for num in range(num_steps): shift = num * stride length = (input_length - shift) // filter_length if length == 0: # we can safely skip this product, it doesn't contribute to the # final convolution. continue r_input_shape = (batch_size, num_input_channels, length, filter_length) r_input = input[ :, :, shift:length * filter_length + shift].reshape(r_input_shape) # shape (b, l, n_filters) r_conved = T.tensordot(r_input, filters_flipped, np.asarray([[1, 3], [1, 2]])) r_conved = r_conved.dimshuffle(0, 2, 1) # shape is (b, n_filters, l) conved = T.set_subtensor(conved[:, :, num::num_steps], r_conved) return conved
def get_output_for(self, input, **kwargs): # cf * bc01... = fb01... out_r = T.tensordot(self.W, input, axes=[[0], [1]]) # input dims to broadcast over remaining_dims = range(2, input.ndim) # bf01... out = out_r.dimshuffle(1, 0, *remaining_dims) if self.b is None: activation = out else: if self.untie_biases: # no broadcast remaining_dims_biases = range(1, input.ndim - 1) else: remaining_dims_biases = ['x'] * (input.ndim - 2) # broadcast b_shuffled = self.b.dimshuffle('x', 0, *remaining_dims_biases) activation = out + b_shuffled return self.nonlinearity(activation)