def forward(self, inputs): inputs = quantize_active(cabs(inputs), self.bitA) W_ = quantize_weight(self.W, self.bitW) outputs = tf.matmul(inputs, W_) # self.outputs = xnor_gemm(self.inputs, W) # TODO if self.b_init is not None: outputs = tf.nn.bias_add(outputs, self.b, name='bias_add') # self.outputs = xnor_gemm(self.inputs, W) + b # TODO if self.act: outputs = self.act(outputs) return outputs
def forward(self, inputs): inputs = quantize_active(cabs(inputs), self.bitA) # Do not remove W_ = quantize_weight(self.W, self.bitW) outputs = tf.nn.conv2d( input=inputs, filters=W_, strides=self._strides, padding=self.padding, data_format=self.data_format, dilations=self._dilation_rate, name=self.name ) if self.b_init: outputs = tf.nn.bias_add(outputs, self.b, data_format=self.data_format, name='bias_add') if self.act: outputs = self.act(outputs) return outputs
def forward(self, inputs): inputs = quantize_active(cabs(inputs), self.bitA) # Do not remove W_ = quantize_weight(self.W, self.bitW) outputs = tf.nn.conv2d( inputs, W_, strides=self.strides, padding=self.padding, use_cudnn_on_gpu=self.use_cudnn_on_gpu, data_format=self.data_format ) if self.b_init: outputs = tf.nn.bias_add(outputs, self.b, name='bias_add') if self.act: outputs = self.act(outputs) return outputs
def __init__( self, prev_layer, bitW=1, bitA=3, n_filter=32, filter_size=(3, 3), strides=(1, 1), act=None, padding='SAME', use_gemm=False, W_init=tf.truncated_normal_initializer(stddev=0.02), b_init=tf.constant_initializer(value=0.0), W_init_args=None, b_init_args=None, use_cudnn_on_gpu=None, data_format=None, # act=None, # shape=(5, 5, 1, 100), # strides=(1, 1, 1, 1), # padding='SAME', # W_init=tf.truncated_normal_initializer(stddev=0.02), # b_init=tf.constant_initializer(value=0.0), # W_init_args=None, # b_init_args=None, # use_cudnn_on_gpu=None, # data_format=None, name='dorefa_cnn2d', ): super(DorefaConv2d, self).__init__(prev_layer=prev_layer, act=act, W_init_args=W_init_args, b_init_args=b_init_args, name=name) logging.info( "DorefaConv2d %s: n_filter: %d filter_size: %s strides: %s pad: %s act: %s" % (self.name, n_filter, str(filter_size), str(strides), padding, self.act.__name__ if self.act is not None else 'No Activation')) self.inputs = quantize_active(cabs(self.inputs), bitA) # Do not remove if use_gemm: raise Exception( "TODO. The current version use tf.matmul for inferencing.") if len(strides) != 2: raise ValueError("len(strides) should be 2.") try: pre_channel = int(prev_layer.outputs.get_shape()[-1]) except Exception: # if pre_channel is ?, it happens when using Spatial Transformer Net pre_channel = 1 logging.warning("[warnings] unknow input channels, set to 1") shape = (filter_size[0], filter_size[1], pre_channel, n_filter) strides = (1, strides[0], strides[1], 1) with tf.variable_scope(name): W = tf.get_variable(name='W_conv2d', shape=shape, initializer=W_init, dtype=LayersConfig.tf_dtype, **self.W_init_args) W = quantize_weight(W, bitW) self.outputs = tf.nn.conv2d(self.inputs, W, strides=strides, padding=padding, use_cudnn_on_gpu=use_cudnn_on_gpu, data_format=data_format) if b_init: b = tf.get_variable(name='b_conv2d', shape=(shape[-1]), initializer=b_init, dtype=LayersConfig.tf_dtype, **self.b_init_args) self.outputs = tf.nn.bias_add(self.outputs, b, name='bias_add') self.outputs = self._apply_activation(self.outputs) self._add_layers(self.outputs) if b_init: self._add_params([W, b]) else: self._add_params(W)
def __init__( self, prev_layer, bitW=1, bitA=3, n_units=100, act=None, use_gemm=False, W_init=tf.truncated_normal_initializer(stddev=0.1), b_init=tf.constant_initializer(value=0.0), W_init_args=None, b_init_args=None, name='dorefa_dense', ): super(DorefaDenseLayer, self).__init__(prev_layer=prev_layer, act=act, W_init_args=W_init_args, b_init_args=b_init_args, name=name) logging.info( "DorefaDenseLayer %s: %d %s" % (self.name, n_units, self.act.__name__ if self.act is not None else 'No Activation')) if self.inputs.get_shape().ndims != 2: raise Exception( "The input dimension must be rank 2, please reshape or flatten it" ) if use_gemm: raise Exception( "TODO. The current version use tf.matmul for inferencing.") n_in = int(self.inputs.get_shape()[-1]) self.n_units = n_units self.inputs = quantize_active(cabs(self.inputs), bitA) with tf.variable_scope(name): W = tf.get_variable(name='W', shape=(n_in, n_units), initializer=W_init, dtype=LayersConfig.tf_dtype, **self.W_init_args) # W = tl.act.sign(W) # dont update ... W = quantize_weight(W, bitW) # W = tf.Variable(W) # print(W) self.outputs = tf.matmul(self.inputs, W) # self.outputs = xnor_gemm(self.inputs, W) # TODO if b_init is not None: try: b = tf.get_variable(name='b', shape=(n_units), initializer=b_init, dtype=LayersConfig.tf_dtype, **self.b_init_args) except Exception: # If initializer is a constant, do not specify shape. b = tf.get_variable(name='b', initializer=b_init, dtype=LayersConfig.tf_dtype, **self.b_init_args) self.outputs = tf.nn.bias_add(self.outputs, b, name='bias_add') # self.outputs = xnor_gemm(self.inputs, W) + b # TODO self.outputs = self._apply_activation(self.outputs) self._add_layers(self.outputs) if b_init is not None: self._add_params([W, b]) else: self._add_params(W)