def __init__( self, shape, filter_size, num_features, forget_bias=1.0, input_size=None, state_is_tuple=False, act=tf.nn.tanh ): """Initialize the basic Conv LSTM cell.""" # if not state_is_tuple: # logging.warn("%s: Using a concatenated state is slower and will soon be " # "deprecated. Use state_is_tuple=True.", self) if input_size is not None: logging.warn("%s: The input_size parameter is deprecated.", self) self.shape = shape self.filter_size = filter_size self.num_features = num_features self._forget_bias = forget_bias self._state_is_tuple = state_is_tuple self._activation = act
def __init__(self, network, idx, quant_func, dataset): logging.info("### init DeQuant_Layer") self.type = EL_DEQUANTIZE self.typename = "EL_DEQUANTIZE" layer = network.all_layers[idx] shape = layer._nodes[0].out_tensors[0].shape self.count = get_tensor_size(shape) if (self.count > 256 * 1024): logging.warn( "output>1MB data, we assume it is dbg usage, cut to 1MB") self.count = 256 * 1024 minv, maxv, _ = quant_func(network, layer, dataset) self.scale, self.bias = min_max_to_scale_bias(minv, maxv) self.memsize = self.count * (4 + 1) self.outsize = self.count * 4 logging.info("###dequant layer: count=%d, sclale=%f, bias=%f" % (self.count, self.scale, self.bias))