Example #1
0
  def split_node_rq(
      self,
      node: network_components.BaseNode,
      left_edges: List[network_components.Edge],
      right_edges: List[network_components.Edge],
      left_name: Optional[Text] = None,
      right_name: Optional[Text] = None,      
  ) -> Tuple[network_components.BaseNode, network_components.BaseNode]:
    """Split a `Node` using RQ (reversed QR) decomposition

    Let M be the matrix created by flattening left_edges and right_edges into
    2 axes. Let :math:`QR = M^*` be the QR Decomposition of 
    :math:`M^*`. This will split the network into 2 nodes. The left node's 
    tensor will be :math:`R^*` (a lower triangular matrix) and the right node's tensor will be 
    :math:`Q^*` (an orthonormal matrix)

    Args:
      node: The node you want to split.
      left_edges: The edges you want connected to the new left node.
      right_edges: The edges you want connected to the new right node.
      left_name: The name of the new left node. If `None`, a name will be generated
        automatically.
      right_name: The name of the new right node. If `None`, a name will be generated
        automatically.

    Returns:
      A tuple containing:
        left_node: 
          A new node created that connects to all of the `left_edges`.
          Its underlying tensor is :math:`Q`
        right_node: 
          A new node created that connects to all of the `right_edges`.
          Its underlying tensor is :math:`R`
    """
    node.reorder_edges(left_edges + right_edges)
    q, r = self.backend.qr_decomposition(node.tensor, len(left_edges))
    left_node = self.add_node(q, name=left_name)
    for i, edge in enumerate(left_edges):
      left_node.add_edge(edge, i)
      edge.update_axis(i, node, i, left_node)
    right_node = self.add_node(r, name=right_name)
    for i, edge in enumerate(right_edges):
      # i + 1 to account for the new edge.
      right_node.add_edge(edge, i + 1)
      edge.update_axis(i + len(left_edges), node, i + 1, right_node)
    self.connect(left_node[-1], right_node[0])
    self.nodes_set.remove(node)
    return left_node, right_node
def split_node_full_svd(
    node: BaseNode,
    left_edges: List[Edge],
    right_edges: List[Edge],
    max_singular_values: Optional[int] = None,
    max_truncation_err: Optional[float] = None,
    left_name: Optional[Text] = None,
    middle_name: Optional[Text] = None,
    right_name: Optional[Text] = None,
    left_edge_name: Optional[Text] = None,
    right_edge_name: Optional[Text] = None,
) -> Tuple[BaseNode, BaseNode, BaseNode, Tensor]:
    """Split a node by doing a full singular value decomposition.

  Let M be the matrix created by flattening left_edges and right_edges into
  2 axes. Let :math:`U S V^* = M` be the Singular Value Decomposition of
  :math:`M`.

  The left most node will be :math:`U` tensor of the SVD, the middle node is
  the diagonal matrix of the singular values, ordered largest to smallest,
  and the right most node will be the :math:`V*` tensor of the SVD.

  The singular value decomposition is truncated if `max_singular_values` or
  `max_truncation_err` is not `None`.

  The truncation error is the 2-norm of the vector of truncated singular
  values. If only `max_truncation_err` is set, as many singular values will
  be truncated as possible while maintaining:
  `norm(truncated_singular_values) <= max_truncation_err`.

  If only `max_singular_values` is set, the number of singular values kept
  will be `min(max_singular_values, number_of_singular_values)`, so that
  `max(0, number_of_singular_values - max_singular_values)` are truncated.

  If both `max_truncation_err` and `max_singular_values` are set,
  `max_singular_values` takes priority: The truncation error may be larger
  than `max_truncation_err` if required to satisfy `max_singular_values`.

  Args:
    node: The node you want to split.
    left_edges: The edges you want connected to the new left node.
    right_edges: The edges you want connected to the new right node.
    max_singular_values: The maximum number of singular values to keep.
    max_truncation_err: The maximum allowed truncation error.
    left_name: The name of the new left node. If None, a name will be 
      generated automatically.
    middle_name: The name of the new center node. If None, a name will be 
      generated automatically.
    right_name: The name of the new right node. If None, a name will be 
      generated automatically.
    left_edge_name: The name of the new left `Edge` connecting
      the new left node (`U`) and the new central node (`S`).
      If `None`, a name will be generated automatically.
    right_edge_name: The name of the new right `Edge` connecting
      the new central node (`S`) and the new right node (`V*`).
      If `None`, a name will be generated automatically.

  Returns:
    A tuple containing:
      left_node:
        A new node created that connects to all of the `left_edges`.
        Its underlying tensor is :math:`U`
      singular_values_node:
        A new node that has 2 edges connecting `left_node` and `right_node`.
        Its underlying tensor is :math:`S`
      right_node:
        A new node created that connects to all of the `right_edges`.
        Its underlying tensor is :math:`V^*`
      truncated_singular_values:
        The vector of truncated singular values.
  """
    if not hasattr(node, 'backend'):
        raise TypeError('Node {} of type {} has no `backend`'.format(
            node, type(node)))

    if node.axis_names and left_edge_name and right_edge_name:
        left_axis_names = []
        right_axis_names = [right_edge_name]
        for edge in left_edges:
            left_axis_names.append(node.axis_names[edge.axis1] if edge.node1 is
                                   node else node.axis_names[edge.axis2])
        for edge in right_edges:
            right_axis_names.append(node.axis_names[edge.axis1] if edge.node1
                                    is node else node.axis_names[edge.axis2])
        left_axis_names.append(left_edge_name)
        center_axis_names = [left_edge_name, right_edge_name]
    else:
        left_axis_names = None
        center_axis_names = None
        right_axis_names = None

    backend = node.backend

    node.reorder_edges(left_edges + right_edges)
    u, s, vh, trun_vals = backend.svd_decomposition(node.tensor,
                                                    len(left_edges),
                                                    max_singular_values,
                                                    max_truncation_err)
    left_node = Node(u,
                     name=left_name,
                     axis_names=left_axis_names,
                     backend=backend.name)
    singular_values_node = Node(backend.diag(s),
                                name=middle_name,
                                axis_names=center_axis_names,
                                backend=backend.name)

    right_node = Node(vh,
                      name=right_name,
                      axis_names=right_axis_names,
                      backend=backend.name)

    for i, edge in enumerate(left_edges):
        left_node.add_edge(edge, i)
        edge.update_axis(i, node, i, left_node)
    for i, edge in enumerate(right_edges):
        # i + 1 to account for the new edge.
        right_node.add_edge(edge, i + 1)
        edge.update_axis(i + len(left_edges), node, i + 1, right_node)
    connect(left_node.edges[-1],
            singular_values_node.edges[0],
            name=left_edge_name)
    connect(singular_values_node.edges[1],
            right_node.edges[0],
            name=right_edge_name)
    return left_node, singular_values_node, right_node, trun_vals
def split_node_rq(
    node: BaseNode,
    left_edges: List[Edge],
    right_edges: List[Edge],
    left_name: Optional[Text] = None,
    right_name: Optional[Text] = None,
    edge_name: Optional[Text] = None,
) -> Tuple[BaseNode, BaseNode]:
    """Split a `Node` using RQ (reversed QR) decomposition

  Let M be the matrix created by flattening left_edges and right_edges into
  2 axes. Let :math:`QR = M^*` be the QR Decomposition of
  :math:`M^*`. This will split the network into 2 nodes. The left node's
  tensor will be :math:`R^*` (a lower triangular matrix) and the right 
    node's tensor will be :math:`Q^*` (an orthonormal matrix)

  Args:
    node: The node you want to split.
    left_edges: The edges you want connected to the new left node.
    right_edges: The edges you want connected to the new right node.
    left_name: The name of the new left node. If `None`, a name will be 
      generated automatically.
    right_name: The name of the new right node. If `None`, a name will be 
      generated automatically.
    edge_name: The name of the new `Edge` connecting the new left and 
      right node. If `None`, a name will be generated automatically.

  Returns:
    A tuple containing:
      left_node:
        A new node created that connects to all of the `left_edges`.
        Its underlying tensor is :math:`Q`
      right_node:
        A new node created that connects to all of the `right_edges`.
        Its underlying tensor is :math:`R`
  """
    if not hasattr(node, 'backend'):
        raise TypeError('Node {} of type {} has no `backend`'.format(
            node, type(node)))

    if node.axis_names and edge_name:
        left_axis_names = []
        right_axis_names = [edge_name]
        for edge in left_edges:
            left_axis_names.append(node.axis_names[edge.axis1] if edge.node1 is
                                   node else node.axis_names[edge.axis2])
        for edge in right_edges:
            right_axis_names.append(node.axis_names[edge.axis1] if edge.node1
                                    is node else node.axis_names[edge.axis2])
        left_axis_names.append(edge_name)
    else:
        left_axis_names = None
        right_axis_names = None
    backend = node.backend
    node.reorder_edges(left_edges + right_edges)
    r, q = backend.rq_decomposition(node.tensor, len(left_edges))
    left_node = Node(r,
                     name=left_name,
                     axis_names=left_axis_names,
                     backend=backend.name)
    for i, edge in enumerate(left_edges):
        left_node.add_edge(edge, i)
        edge.update_axis(i, node, i, left_node)
    right_node = Node(q,
                      name=right_name,
                      axis_names=right_axis_names,
                      backend=backend.name)
    for i, edge in enumerate(right_edges):
        # i + 1 to account for the new edge.
        right_node.add_edge(edge, i + 1)
        edge.update_axis(i + len(left_edges), node, i + 1, right_node)
    connect(left_node.edges[-1], right_node.edges[0], name=edge_name)
    return left_node, right_node
def split_node(
    node: BaseNode,
    left_edges: List[Edge],
    right_edges: List[Edge],
    max_singular_values: Optional[int] = None,
    max_truncation_err: Optional[float] = None,
    left_name: Optional[Text] = None,
    right_name: Optional[Text] = None,
    edge_name: Optional[Text] = None,
) -> Tuple[BaseNode, BaseNode, Tensor]:
    """Split a `Node` using Singular Value Decomposition.

  Let M be the matrix created by flattening left_edges and right_edges into
  2 axes. Let :math:`U S V^* = M` be the Singular Value Decomposition of 
  :math:`M`. This will split the network into 2 nodes. The left node's 
  tensor will be :math:`U \\sqrt{S}` and the right node's tensor will be 
  :math:`\\sqrt{S} V^*` where :math:`V^*` is
  the adjoint of :math:`V`.

  The singular value decomposition is truncated if `max_singular_values` or
  `max_truncation_err` is not `None`.

  The truncation error is the 2-norm of the vector of truncated singular
  values. If only `max_truncation_err` is set, as many singular values will
  be truncated as possible while maintaining:
  `norm(truncated_singular_values) <= max_truncation_err`.

  If only `max_singular_values` is set, the number of singular values kept
  will be `min(max_singular_values, number_of_singular_values)`, so that
  `max(0, number_of_singular_values - max_singular_values)` are truncated.

  If both `max_truncation_err` and `max_singular_values` are set,
  `max_singular_values` takes priority: The truncation error may be larger
  than `max_truncation_err` if required to satisfy `max_singular_values`.

  Args:
    node: The node you want to split.
    left_edges: The edges you want connected to the new left node.
    right_edges: The edges you want connected to the new right node.
    max_singular_values: The maximum number of singular values to keep.
    max_truncation_err: The maximum allowed truncation error.
    left_name: The name of the new left node. If `None`, a name will be 
      generated automatically.
    right_name: The name of the new right node. If `None`, a name will be 
      genenerated automatically.
    edge_name: The name of the new `Edge` connecting the new left and 
      right node. If `None`, a name will be generated automatically. 
      The new axis will get the same name as the edge.

  Returns:
    A tuple containing:
      left_node: 
        A new node created that connects to all of the `left_edges`.
        Its underlying tensor is :math:`U \\sqrt{S}`
      right_node: 
        A new node created that connects to all of the `right_edges`.
        Its underlying tensor is :math:`\\sqrt{S} V^*`
      truncated_singular_values: 
        The vector of truncated singular values.
  """

    if not hasattr(node, 'backend'):
        raise TypeError('Node {} of type {} has no `backend`'.format(
            node, type(node)))

    if node.axis_names and edge_name:
        left_axis_names = []
        right_axis_names = [edge_name]
        for edge in left_edges:
            left_axis_names.append(node.axis_names[edge.axis1] if edge.node1 is
                                   node else node.axis_names[edge.axis2])
        for edge in right_edges:
            right_axis_names.append(node.axis_names[edge.axis1] if edge.node1
                                    is node else node.axis_names[edge.axis2])
        left_axis_names.append(edge_name)
    else:
        left_axis_names = None
        right_axis_names = None

    backend = node.backend
    node.reorder_edges(left_edges + right_edges)

    u, s, vh, trun_vals = backend.svd_decomposition(node.tensor,
                                                    len(left_edges),
                                                    max_singular_values,
                                                    max_truncation_err)
    sqrt_s = backend.sqrt(s)
    u_s = u * sqrt_s
    # We have to do this since we are doing element-wise multiplication against
    # the first axis of vh. If we don't, it's possible one of the other axes of
    # vh will be the same size as sqrt_s and would multiply across that axis
    # instead, which is bad.
    sqrt_s_broadcast_shape = backend.concat(
        [backend.shape(sqrt_s), [1] * (len(vh.shape) - 1)], axis=-1)
    vh_s = vh * backend.reshape(sqrt_s, sqrt_s_broadcast_shape)
    left_node = Node(u_s,
                     name=left_name,
                     axis_names=left_axis_names,
                     backend=backend.name)
    for i, edge in enumerate(left_edges):
        left_node.add_edge(edge, i)
        edge.update_axis(i, node, i, left_node)
    right_node = Node(vh_s,
                      name=right_name,
                      axis_names=right_axis_names,
                      backend=backend.name)
    for i, edge in enumerate(right_edges):
        # i + 1 to account for the new edge.
        right_node.add_edge(edge, i + 1)
        edge.update_axis(i + len(left_edges), node, i + 1, right_node)
    connect(left_node.edges[-1], right_node.edges[0], name=edge_name)
    node.fresh_edges(node.axis_names)
    return left_node, right_node, trun_vals
Example #5
0
  def split_node_full_svd(self,
                          node: network_components.BaseNode,
                          left_edges: List[network_components.Edge],
                          right_edges: List[network_components.Edge],
                          max_singular_values: Optional[int] = None,
                          max_truncation_err: Optional[float] = None,
                          left_name: Optional[Text] = None,
                          middle_name: Optional[Text] = None,      
                          right_name: Optional[Text] = None
                         ) -> Tuple[network_components.BaseNode,
                                    network_components.BaseNode,
                                    network_components.BaseNode, Tensor]:
    """Split a node by doing a full singular value decomposition.

    Let M be the matrix created by flattening left_edges and right_edges into
    2 axes. Let :math:`U S V^* = M` be the Singular Value Decomposition of 
    :math:`M`.

    The left most node will be :math:`U` tensor of the SVD, the middle node is
    the diagonal matrix of the singular values, ordered largest to smallest,
    and the right most node will be the :math:`V*` tensor of the SVD.

    The singular value decomposition is truncated if `max_singular_values` or
    `max_truncation_err` is not `None`.

    The truncation error is the 2-norm of the vector of truncated singular
    values. If only `max_truncation_err` is set, as many singular values will
    be truncated as possible while maintaining:
    `norm(truncated_singular_values) <= max_truncation_err`.

    If only `max_singular_values` is set, the number of singular values kept
    will be `min(max_singular_values, number_of_singular_values)`, so that
    `max(0, number_of_singular_values - max_singular_values)` are truncated.

    If both `max_truncation_err` and `max_singular_values` are set,
    `max_singular_values` takes priority: The truncation error may be larger
    than `max_truncation_err` if required to satisfy `max_singular_values`.

    Args:
      node: The node you want to split.
      left_edges: The edges you want connected to the new left node.
      right_edges: The edges you want connected to the new right node.
      max_singular_values: The maximum number of singular values to keep.
      max_truncation_err: The maximum allowed truncation error.
      left_name: The name of the new left node. If None, a name will be generated
        automatically.
      middle_name: The name of the new center node. If None, a name will be generated
        automatically.
      right_name: The name of the new right node. If None, a name will be generated
        automatically.

    Returns:
      A tuple containing:
        left_node: 
          A new node created that connects to all of the `left_edges`.
          Its underlying tensor is :math:`U`
        singular_values_node: 
          A new node that has 2 edges connecting `left_node` and `right_node`.
          Its underlying tensor is :math:`S`
        right_node: 
          A new node created that connects to all of the `right_edges`.
          Its underlying tensor is :math:`V^*`
        truncated_singular_values: 
          The vector of truncated singular values.
    """
    node.reorder_edges(left_edges + right_edges)
    u, s, vh, trun_vals = self.backend.svd_decomposition(
        node.tensor, len(left_edges), max_singular_values, max_truncation_err)
    left_node = self.add_node(u, name=left_name)
    singular_values_node = self.add_node(self.backend.diag(s), name=middle_name)
    right_node = self.add_node(vh, name=right_name)
    for i, edge in enumerate(left_edges):
      left_node.add_edge(edge, i)
      edge.update_axis(i, node, i, left_node)
    for i, edge in enumerate(right_edges):
      # i + 1 to account for the new edge.
      right_node.add_edge(edge, i + 1)
      edge.update_axis(i + len(left_edges), node, i + 1, right_node)
    self.connect(left_node[-1], singular_values_node[0])
    self.connect(singular_values_node[1], right_node[0])
    self.nodes_set.remove(node)
    return left_node, singular_values_node, right_node, trun_vals