Example #1
0
def get_data():
    train = BatchData(dataset.Mnist('train'), 128)
    test = BatchData(dataset.Mnist('test'), 256, remainder=True)

    train = PrintData(train)

    return train, test
Example #2
0
def get_data():
    def f(dp):
        im = dp[0][:, :, None]
        onehot = np.eye(10)[dp[1]]
        return [im, onehot]

    train = BatchData(MapData(dataset.Mnist('train'), f), 128)
    test = BatchData(MapData(dataset.Mnist('test'), f), 256)
    return train, test
Example #3
0
def get_data():
    train = BatchData(dataset.Mnist('train'), 128)
    # 若 remainder 为 True, 剩余不足256大小的样本也会成为一个小 batch
    test = BatchData(dataset.Mnist('test'), 256, remainder=True)
    # Behave like an identity mapping, but print shape and
    # range of the first few datapoints.
    train = PrintData(train)

    return train, test
Example #4
0
def get_data():
    # We don't need any fancy data loading for this simple example.
    # See dataflow tutorial at https://tensorpack.readthedocs.io/tutorial/dataflow.html
    train = BatchData(dataset.Mnist('train'), 128)
    test = BatchData(dataset.Mnist('test'), 256, remainder=True)

    train = PrintData(train)

    return train, test
Example #5
0
def get_data():
    def f(dp):
        im = dp[0][:, :, None]
        onehot = np.zeros(10, dtype='int32')
        onehot[dp[1]] = 1
        return [im, onehot]

    train = BatchData(MapData(dataset.Mnist('train'), f), 128)
    test = BatchData(MapData(dataset.Mnist('test'), f), 256)
    return train, test
Example #6
0
def get_input_mnist():
    train, test = dataset.Mnist('train'), dataset.Mnist('test', shuffle=False)

    def preprocess(x):
        image, label = x
        image = np.expand_dims(image, axis=-1)  # Add a channels dimension
        onehot = np.zeros(10)
        onehot[label] = 1.0
        return image, onehot

    return MapData(train,
                   preprocess), MapData(test,
                                        preprocess), ((28, 28, 1), (10, ))
Example #7
0
def get_data():
    # Dataflow / Input src
    # Batch size = hyperparam. others found (cross validation)
    train = BatchData(dataset.Mnist('train'), batch_size / num_gpus)
    test = BatchData(dataset.Mnist('test'),
                     2 * batch_size / num_gpus,
                     remainder=True)

    # train = PrintData(train)

    print("Testing Dataflow Speed ...")
    print(TestDataSpeed(dataset.Mnist('train')).start())
    print("Ended Dataflow test")

    return train, test
def get_data():
    # ds = ConcatData([dataset.Mnist('train'), dataset.Mnist('test')])
    ds = ConcatData([dataset.Mnist('test')])
    ds = BatchData(ds, BATCH)
    # ds = MapData(ds, lambda dp: [dp[0]])  # only use the image
    ds = MapData(ds, lambda dp: [dp[0], dp[1]])  # only use the image
    return ds
Example #9
0
def get_data(train_or_test):
    isTrain = train_or_test == 'train'
    ds = dataset.Mnist(train_or_test)
    # ds = dataset.Mnist(train_or_test, dir='data')
    ds = BatchData(ds, BATCH_SIZE, remainder=not isTrain)
    if isTrain:
        ds = PrefetchData(ds, 3, 2)
    return ds
def get_data(train_or_test, batch_size):
    isTrain = train_or_test == 'train'
    ds = dataset.Mnist(train_or_test, isTrain)
    datasize = len(ds)
    if isTrain:
        augmentors = [imgaug.Rotation(45.0)]
    else:
        augmentors = [imgaug.Rotation(45.0)]
    ds = AugmentImageComponent(ds, augmentors)
    ds = BatchData(ds, batch_size, remainder=not isTrain)
    if isTrain:
        ds = PrefetchData(ds, 3, 2)
    return ds, datasize
Example #11
0
def get_data(isTrain):
    ds = dataset.Mnist('train' if isTrain else 'test')
    # create augmentation for both training and testing
    augs = [
        imgaug.MapImage(lambda x: x * 255.0),
        imgaug.RandomResize((0.7, 1.2), (0.7, 1.2)),
        imgaug.RotationAndCropValid(45),
        imgaug.RandomPaste((IMAGE_SIZE, IMAGE_SIZE)),
        imgaug.SaltPepperNoise(white_prob=0.01, black_prob=0.01)
    ]
    ds = AugmentImageComponent(ds, augs)

    ds = JoinData([ds, ds])
    # stack the two digits into two channels, and label it with the sum
    ds = MapData(ds, lambda dp: [np.stack([dp[0], dp[2]], axis=2), dp[1] + dp[3]])
    ds = BatchData(ds, 128)
    return ds
Example #12
0
def get_data():
    dataset_train = BatchData(DisturbLabel(dataset.Mnist('train'), args.prob),
                              128)
    dataset_test = BatchData(dataset.Mnist('test'), 256, remainder=True)
    return dataset_train, dataset_test
Example #13
0
File: vae.py Project: qq456cvb/AAE
        # img = next(self.dataset)[0]
        # fig.add_subplot(2, 1, 1)
        # plt.imshow(img)
        # rec = self.decoder(self.encoder(img[None, ...])[0])[0][0].reshape((IMAGE_SIZE, IMAGE_SIZE))
        # fig.add_subplot(2, 1, 2)
        # plt.imshow(rec)
        # plt.show()


if __name__ == '__main__':
    # automatically setup the directory train_log/mnist-convnet for logging
    logger.auto_set_dir()

    dataset_train, dataset_test = get_data()

    evaluator = Evaluator(dataset.Mnist('test'))

    # How many iterations you want in each epoch.
    # This len(data) is the default value.
    steps_per_epoch = len(dataset_train)

    # get the config which contains everything necessary in a training
    config = TrainConfig(
        model=Model(),
        # The input source for training. FeedInput is slow, this is just for demo purpose.
        # In practice it's best to use QueueInput or others. See tutorials for details.
        data=FeedInput(dataset_train),
        callbacks=[
            ScheduledHyperParamSetter('learning_rate', [(50, 1e-3),
                                                        (500, 1e-4)]),
            ModelSaver(),  # save the model after every epoch
Example #14
0
def get_data(train_or_test='train'):
    isTrain = train_or_test == 'train'
    # ds = dataset.Mnist(train_or_test)
    ds = dataset.Mnist(train_or_test, shuffle=False)
    ds = BatchData(ds, BATCH_SIZE, remainder=not isTrain)
    return ds
Example #15
0
def get_test_data(batch=128):
    ds = dataset.Mnist('test')
    ds = BatchData(ds, batch)
    return ds
Example #16
0
def get_data():
    ds = ConcatData([dataset.Mnist('train'), dataset.Mnist('test')])
    ds = BatchData(ds, BATCH)
    return ds
Example #17
0
def get_data():
    train = BatchData(dataset.Mnist('train'), 10000)
    test = BatchData(dataset.Mnist('test'), 256, remainder=True)
    return train, test