if __name__ == "__main__": Log.AppLogger.configure(mkdir=True) App.add_command( 'decode', decode, { 'gpu': arg('--gpu', '-g', type=int, default=-1, help='GPU ID (negative value indicates CPU)'), 'model_file': arg('--modelfile', type=str, required=True, help='Trained model archive file'), 'save_to': arg('--out', type=str, default=None, help='Save results to the specified directory'), 'target_file': arg('--targetfile', type=str, required=True, help='Decoding target data file'), }) App.run()
if __name__ == "__main__": App.configure(name='chainer-mnist', logoption='d') App.add_command( 'train', train, { 'batch_size': arg('--batchsize', '-b', type=int, default=100, help='Number of images in each mini-batch'), 'device': arg('--device', type=int, default=-1, metavar='ID', help='Device ID (negative value indicates CPU)'), 'n_epoch': arg('--epoch', '-e', type=int, default=20, help='Number of sweeps over the dataset to train'), 'n_units': arg('--unit', '-u', type=int, default=1000, help='Number of units'), }, description="Execute training") App.run()
App.add_command( 'train', train, { 'batch_size': arg('--batchsize', type=int, default=20, metavar='NUM', help='Number of examples in each mini-batch'), 'cache_dir': arg('--cachedir', type=str, default=(App.basedir + '/../cache'), metavar='DIR', help='Cache directory'), 'test_file': arg('--devfile', type=str, default=None, metavar='FILE', help='Development data file'), 'device': arg('--device', type=int, default=-1, metavar='ID', help='Device ID (negative value indicates CPU)'), 'embed_file': arg('--embedfile', type=str, default=None, metavar='FILE', help='Pretrained word embedding file'), 'n_epoch': arg('--epoch', type=int, default=20, metavar='NUM', help='Number of sweeps over the dataset to train'), 'format': arg('--format', type=str, choices=('tree', 'genia'), default='tree', help='Training/Development data format'), 'grad_clip': arg('--gradclip', type=float, default=5.0, metavar='VALUE', help='L2 norm threshold of gradient norm'), 'encoder_input': arg('--inputs', type=str, choices=('char', 'postag', 'elmo', 'bert-base', 'bert-large'), nargs='*', default=('char', 'postag'), help='Additional inputs for the encoder'), 'l2_lambda': arg('--l2', type=float, default=0.0, metavar='VALUE', help='Strength of L2 regularization'), 'limit': arg('--limit', type=int, default=-1, metavar='NUM', help='Limit of the number of training samples'), 'lr': arg('--lr', type=float, default=0.001, metavar='VALUE', help='Learning Rate'), 'bert_model': arg('--bert_model', type=int, default=0, metavar='VALUE', help='Whether to use BERT model or not'), 'bert_dir': arg('--bert_dir', type=str, default='', metavar='VALUE', help='Directory containing bert files'), 'model_config': arg('--model', action='store_dict', metavar='KEY=VALUE', help='Model configuration'), 'refresh_cache': arg('--refresh', '-r', action='store_true', help='Refresh cache'), 'save_dir': arg('--savedir', type=str, default=None, metavar='DIR', help='Directory to save the model'), 'seed': arg('--seed', type=int, default=None, metavar='VALUE', help='Random seed'), 'train_file': arg('--trainfile', type=str, required=True, metavar='FILE', help='Training data file'), })
App.add_command( 'train', train, { 'backend': arg('--backend', type=str, choices=('chainer', 'pytorch'), default='chainer', help='Backend framework for computation'), 'batch_size': arg('--batchsize', '-b', type=int, default=32, help='Number of examples in each mini-batch'), 'embed_file': arg('--embedfile', type=str, default=None, help='Pretrained word embedding file'), 'embed_size': arg('--embedsize', type=int, default=100, help='Size of embeddings'), 'gpu': arg('--gpu', '-g', type=int, default=-1, help='GPU ID (negative value indicates CPU)'), 'lr': arg('--lr', type=float, default=0.002, help='Learning Rate'), 'model_params': arg('--model', action='store_dict', default={}, help='Model hyperparameter'), 'n_epoch': arg('--epoch', '-e', type=int, default=20, help='Number of sweeps over the dataset to train'), 'seed': arg('--seed', type=int, default=None, help='Random seed'), 'save_to': arg('--out', type=str, default=None, help='Save model to the specified directory'), 'test_file': arg('--validfile', type=str, default=None, help='validation data file'), 'train_file': arg('--trainfile', type=str, required=True, help='training data file'), })
trainer = training.Trainer(optimizer, model, loss_func=compute_loss, accuracy_func=compute_accuracy) trainer.configure(framework_utils.config) trainer.fit(train_dataset, None, batch_size=batch_size, epochs=n_epoch, validation_data=test_dataset, verbose=App.verbose) if __name__ == "__main__": logging.AppLogger.configure(mkdir=True) App.add_command( 'train', train, { 'train_file': arg('--trainfile', type=str, required=True), 'test_file': arg('--testfile', type=str), 'word_embed_file': arg('--embedfile', type=str), 'n_epoch': arg('--epoch', type=int, default=20), 'batch_size': arg('--batchsize', type=int, default=10), 'lr': arg('--lr', type=float, default=0.01), 'gpu': arg('--gpu', type=int, default=-1), 'seed': arg('--seed', type=int, default=1), }) chainer.config.debug = False chainer.config.type_check = False App.run()
App.add_command( 'train', train, { 'batch_size': arg('--batchsize', type=int, default=5000, metavar='NUM', help='Number of tokens in each mini-batch'), 'cache_dir': arg('--cachedir', type=str, default=(App.basedir + '/../cache'), metavar='DIR', help='Cache directory'), 'test_file': arg('--devfile', type=str, default=None, metavar='FILE', help='Development data file'), 'device': arg('--device', type=int, default=-1, metavar='ID', help='Device ID (negative value indicates CPU)'), 'embed_file': arg('--embedfile', type=str, default=None, metavar='FILE', help='Pretrained word embedding file'), 'n_epoch': arg('--epoch', type=int, default=300, metavar='NUM', help='Number of sweeps over the dataset to train'), 'lr': arg('--lr', type=float, default=2e-3, metavar='VALUE', help='Learning rate'), 'model_config': arg('--model', action='store_dict', metavar='KEY=VALUE', help='Model configuration'), 'refresh_cache': arg('--refresh', '-r', action='store_true', help='Refresh cache.'), 'save_dir': arg('--savedir', type=str, default=None, metavar='DIR', help='Directory to save the model'), 'seed': arg('--seed', type=int, default=None, metavar='VALUE', help='Random seed'), 'train_file': arg('--trainfile', type=str, required=True, metavar='FILE', help='Training data file.'), })
App.add_command('train', train, { 'batch_size': arg('--batchsize', '-b', type=int, default=32, help='Number of examples in each mini-batch'), 'embed_file': arg('--embedfile', type=str, default=None, help='Pretrained word embedding file'), 'embed_size': arg('--embedsize', type=int, default=100, help='Size of embeddings'), 'gpu': arg('--gpu', '-g', type=int, default=-1, help='GPU ID (negative value indicates CPU)'), 'grad_clip': arg('--gradclip', type=float, default=5.0, help='L2 norm threshold of gradient norm'), 'l2_lambda': arg('--l2', type=float, default=0.0, help='Strength of L2 regularization'), 'lr': arg('--lr', type=float, default=0.001, help='Learning Rate'), 'n_epoch': arg('--epoch', '-e', type=int, default=20, help='Number of sweeps over the dataset to train'), 'seed': arg('--seed', type=int, default=1, help='Random seed'), 'save_to': arg('--out', type=str, default=None, help='Save model to the specified directory'), 'tasks': arg('--task', type=str, default='tp', help='Tasks to train: {t: tagging, p: parsing}'), 'test_file': arg('--validfile', type=str, default=None, help='validation data file'), 'train_file': arg('--trainfile', type=str, required=True, help='training data file'), })