Example #1
0
    def setup_pipeline_network(self, fluid_list):
        """Setup a pipeline network."""
        self.nw = network(fluids=fluid_list)
        self.nw.set_attr(p_unit='bar', T_unit='C', iterinfo=False)

        # %% components

        # main components
        pu = pump('pump')
        pi = pipe('pipeline')
        es = heat_exchanger_simple('energy balance closing')

        closer = cycle_closer('cycle closer')

        pu_pi = connection(pu, 'out1', pi, 'in1')
        pi_es = connection(pi, 'out1', es, 'in1')
        es_closer = connection(es, 'out1', closer, 'in1')
        closer_pu = connection(closer, 'out1', pu, 'in1')
        self.nw.add_conns(pu_pi, pi_es, es_closer, closer_pu)

        # %% parametrization of components

        pu.set_attr(eta_s=0.7)
        pi.set_attr(pr=0.95, L=100, ks=1e-5, D='var', Q=0)
        es.set_attr(pr=1)

        # %% parametrization of connections

        pu_pi.set_attr(p=20, T=100, m=10, fluid={self.nw.fluids[0]: 1})

        # %% solving
        self.nw.solve('design')
Example #2
0
    def setup_clausius_rankine(self, fluid_list):
        """Setup a Clausius-Rankine cycle."""
        self.nw = network(fluids=fluid_list)
        self.nw.set_attr(p_unit='bar', T_unit='C', iterinfo=False)

        # %% components

        # main components
        turb = turbine('turbine')
        con = condenser('condenser')
        pu = pump('pump')
        steam_generator = heat_exchanger_simple('steam generator')
        closer = cycle_closer('cycle closer')

        # cooling water
        so_cw = source('cooling water inlet')
        si_cw = sink('cooling water outlet')

        # %% connections

        # main cycle
        fs_in = connection(closer, 'out1', turb, 'in1', label='livesteam')
        ws = connection(turb, 'out1', con, 'in1', label='wastesteam')
        cond = connection(con, 'out1', pu, 'in1', label='condensate')
        fw = connection(pu, 'out1', steam_generator, 'in1', label='feedwater')
        fs_out = connection(steam_generator, 'out1', closer, 'in1')
        self.nw.add_conns(fs_in, ws, cond, fw, fs_out)

        # cooling water
        cw_in = connection(so_cw, 'out1', con, 'in2')
        cw_out = connection(con, 'out2', si_cw, 'in1')
        self.nw.add_conns(cw_in, cw_out)

        # %% parametrization of components

        turb.set_attr(eta_s=0.9)
        con.set_attr(pr1=1, pr2=0.99, ttd_u=5)
        pu.set_attr(eta_s=0.7)
        steam_generator.set_attr(pr=0.9)

        # %% parametrization of connections

        fs_in.set_attr(p=100, T=500, m=100, fluid={self.nw.fluids[0]: 1})

        cw_in.set_attr(T=20, p=5, fluid={self.nw.fluids[0]: 1})
        cw_out.set_attr(T=30)

        # %% solving
        self.nw.solve('design')
Example #3
0
Hu = 141.873524  # Energy content Hydrogen in MJ/kg
# Q_hydro = P_design * 0.8
# Hu = Q_hydro / comp_hydro.m.val
Q_hydro = 30  # Hydrogen in MW
eta_e = 0.8  # Efficiency of the electrolyzer
T_cw_cold = 50  # Temperature of cold cooling water
T_cw_hot = 80  # Temperature of hot cooling water

# %% network

fluid_list = ['O2', 'H2O', 'H2']

nw = network(fluids=fluid_list,
             T_unit='C',
             p_unit='bar',
             v_unit='l / s',
             iterinfo=False)

# %% components

fw = source('feed water')
oxy = sink('oxygen sink')
hydro = sink('hydrogen sink')
cw_cold = source('cooling water source')
cw_hot = sink('cooling water sink')
comp = compressor('compressor', eta_s=0.9)
el = water_electrolyzer('electrolyzer')

# %% connections
Example #4
0
from tespy.networks import network
from tespy.components import (sink, source, splitter, compressor, condenser,
                              pump, heat_exchanger_simple, valve, drum,
                              heat_exchanger, cycle_closer)
from tespy.connections import connection, ref
from tespy.tools.characteristics import char_line
from tespy.tools.characteristics import load_default_char as ldc

import numpy as np
import pandas as pd

# %% network

nw = network(fluids=['water', 'NH3', 'air'],
             T_unit='C',
             p_unit='bar',
             h_unit='kJ / kg',
             m_unit='kg / s')

# %% components

# sources & sinks
cc = cycle_closer('coolant cycle closer')
cb = source('consumer back flow')
cf = sink('consumer feed flow')
amb = source('ambient air')
amb_out1 = sink('sink ambient 1')
amb_out2 = sink('sink ambient 2')

# ambient air system
sp = splitter('splitter')
Example #5
0
# -*- coding: utf-8 -*-
from tespy.components import source, sink, heat_exchanger_simple, pipe
from tespy.connections import connection, bus, ref
from tespy.networks import network

from sub_consumer import (lin_consum_closed as lc, lin_consum_open as lo, fork
                          as fo)

# %% network

nw = network(fluids=['water'], T_unit='C', p_unit='bar', h_unit='kJ / kg')

# %% components

# sources and sinks

so = source('source')
si = sink('sink')

so1 = source('source1')
si1 = sink('sink1')

so2 = source('source2')
si2 = sink('sink2')

# %% construction part

# pipe_feed

pif1 = pipe('pipe1_feed', ks=7e-5, L=50, D=0.15, offdesign=['kA_char'])
pif2 = pipe('pipe2_feed', ks=7e-5, L=200, D=0.15, offdesign=['kA_char'])
Example #6
0
@author: Malte Fritz
"""

from tespy.networks import network
from tespy.components import sink, source, combustion_chamber_stoich
from tespy.connections import connection

# %% network

# define full fluid list for the network's variable space
fluid_list = ['TESPy::myAir', 'TESPy::myFuel', 'TESPy::myFuel_fg']

# define unit systems and fluid property ranges
nw = network(fluids=fluid_list,
             p_unit='bar',
             T_unit='C',
             p_range=[1, 10],
             T_range=[10, 2000])

# %% components

# sinks & sources
amb = source('ambient')
sf = source('fuel')
fg = sink('flue gas outlet')

# combustion chamber
comb = combustion_chamber_stoich('stoichiometric combustion chamber')

# %% connections
Example #7
0
    def __init__(self):
        self.nw = network(
            fluids=['BICUBIC::water'],
            p_unit='bar', T_unit='C', h_unit='kJ / kg',
            iterinfo=False)
        # components
        # main cycle
        eco = heat_exchanger_simple('economizer')
        eva = heat_exchanger_simple('evaporator')
        sup = heat_exchanger_simple('superheater')
        cc = cycle_closer('cycle closer')
        hpt = turbine('high pressure turbine')
        sp1 = splitter('splitter 1', num_out=2)
        mpt = turbine('mid pressure turbine')
        sp2 = splitter('splitter 2', num_out=2)
        lpt = turbine('low pressure turbine')
        con = condenser('condenser')
        pu1 = pump('feed water pump')
        fwh1 = condenser('feed water preheater 1')
        fwh2 = condenser('feed water preheater 2')
        dsh = desuperheater('desuperheater')
        me2 = merge('merge2', num_in=2)
        pu2 = pump('feed water pump 2')
        pu3 = pump('feed water pump 3')
        me = merge('merge', num_in=2)

        # cooling water
        cwi = source('cooling water source')
        cwo = sink('cooling water sink')

        # connections
        # main cycle
        cc_hpt = connection(cc, 'out1', hpt, 'in1', label='feed steam')
        hpt_sp1 = connection(hpt, 'out1', sp1, 'in1', label='extraction1')
        sp1_mpt = connection(sp1, 'out1', mpt, 'in1', state='g')
        mpt_sp2 = connection(mpt, 'out1', sp2, 'in1', label='extraction2')
        sp2_lpt = connection(sp2, 'out1', lpt, 'in1')
        lpt_con = connection(lpt, 'out1', con, 'in1')
        con_pu1 = connection(con, 'out1', pu1, 'in1')
        pu1_fwh1 = connection(pu1, 'out1', fwh1, 'in2')
        fwh1_me = connection(fwh1, 'out2', me, 'in1', state='l')
        me_fwh2 = connection(me, 'out1', fwh2, 'in2', state='l')
        fwh2_dsh = connection(fwh2, 'out2', dsh, 'in2', state='l')
        dsh_me2 = connection(dsh, 'out2', me2, 'in1')
        me2_eco = connection(me2, 'out1', eco, 'in1', state='l')
        eco_eva = connection(eco, 'out1', eva, 'in1')
        eva_sup = connection(eva, 'out1', sup, 'in1')
        sup_cc = connection(sup, 'out1', cc, 'in1')

        self.nw.add_conns(cc_hpt, hpt_sp1, sp1_mpt, mpt_sp2, sp2_lpt,
                          lpt_con, con_pu1, pu1_fwh1, fwh1_me, me_fwh2,
                          fwh2_dsh, dsh_me2, me2_eco, eco_eva, eva_sup, sup_cc)

        # cooling water
        cwi_con = connection(cwi, 'out1', con, 'in2')
        con_cwo = connection(con, 'out2', cwo, 'in1')

        self.nw.add_conns(cwi_con, con_cwo)

        # preheating
        sp1_dsh = connection(sp1, 'out2', dsh, 'in1')
        dsh_fwh2 = connection(dsh, 'out1', fwh2, 'in1')
        fwh2_pu2 = connection(fwh2, 'out1', pu2, 'in1')
        pu2_me2 = connection(pu2, 'out1', me2, 'in2')

        sp2_fwh1 = connection(sp2, 'out2', fwh1, 'in1')
        fwh1_pu3 = connection(fwh1, 'out1', pu3, 'in1')
        pu3_me = connection(pu3, 'out1', me, 'in2')

        self.nw.add_conns(sp1_dsh, dsh_fwh2, fwh2_pu2, pu2_me2,
                          sp2_fwh1, fwh1_pu3, pu3_me)

        # busses
        # power bus
        self.power = bus('power')
        self.power.add_comps(
            {'comp': hpt, 'char': -1}, {'comp': mpt, 'char': -1},
            {'comp': lpt, 'char': -1}, {'comp': pu1, 'char': -1},
            {'comp': pu2, 'char': -1}, {'comp': pu3, 'char': -1})

        # heating bus
        self.heat = bus('heat')
        self.heat.add_comps(
            {'comp': eco, 'char': 1}, {'comp': eva, 'char': 1},
            {'comp': sup, 'char': 1})

        self.nw.add_busses(self.power, self.heat)

        # parametrization
        # components
        hpt.set_attr(eta_s=0.9)
        mpt.set_attr(eta_s=0.9)
        lpt.set_attr(eta_s=0.9)

        pu1.set_attr(eta_s=0.8)
        pu2.set_attr(eta_s=0.8)
        pu3.set_attr(eta_s=0.8)

        eco.set_attr(pr=0.99)
        eva.set_attr(pr=0.99)
        sup.set_attr(pr=0.99)

        con.set_attr(pr1=0.99, pr2=0.99, ttd_u=5)
        fwh1.set_attr(pr1=0.99, pr2=0.99, ttd_u=5)
        fwh2.set_attr(pr1=0.99, pr2=0.99, ttd_u=5)
        dsh.set_attr(pr1=0.99, pr2=0.99)

        # connections
        eco_eva.set_attr(x=0)
        eva_sup.set_attr(x=1)

        cc_hpt.set_attr(m=200, T=650, p=100, fluid={'water': 1})
        hpt_sp1.set_attr(p=20)
        mpt_sp2.set_attr(p=3)
        lpt_con.set_attr(p=0.05)

        cwi_con.set_attr(T=20, p=10, fluid={'water': 1})
from tespy.connections import connection
from tespy.networks import network
from tespy.components import evaporator, heat_exchanger, pump, turbine, source, sink, cycle_closer, splitter, merge, condenser
from CoolProp.CoolProp import PropsSI
import numpy as np
from tespy.tools import logger
import logging
mypath = logger.define_logging(log_path=True,
                               log_version=True,
                               timed_rotating={'backupCount': 4},
                               screen_level=logging.WARNING,
                               screen_datefmt="no_date")
# define basic cycle
fluids = ['water', 'Isopentane', 'Air']
nw = network(fluids=fluids)
nw.set_attr(p_unit='bar', T_unit='C', h_unit='kJ / kg')
# input parameters (the mass flow rate of cooling air should be adjusted
# based on the temperature of the geo-fluid for stable calculation)
# geo-fluid part
mass_flow_rate_brine = 190.1
mass_flow_rate_steam = 20.4
T_brine_in = 146.6
T_reinjection = 69.1
# cooling air part
mass_flow_rate_air = 6142
T_air = -4.7
p_air = 0.61
# calculation secondary variables
p_before_turbine = PropsSI('P', 'T', T_brine_in + 273.15 - 28, 'Q', 1,
                           'Isopentane') / 1e5
p_steam_in = PropsSI('P', 'T', T_brine_in + 273.15, 'Q', 1, 'water') / 1e5
Example #9
0
@author: Malte Fritz
"""

from tespy.networks import network
from tespy.components import (sink, source, compressor, turbine, condenser,
                              combustion_chamber, pump, heat_exchanger, drum,
                              cycle_closer)
from tespy.connections import connection, bus, ref

# %% network
fluid_list = ['Ar', 'N2', 'O2', 'CO2', 'CH4', 'H2O']

nw = network(fluids=fluid_list,
             p_unit='bar',
             T_unit='C',
             h_unit='kJ / kg',
             p_range=[1, 10],
             T_range=[110, 1500],
             h_range=[500, 4000])

# %% components
# gas turbine part
comp = compressor('compressor')
c_c = combustion_chamber('combustion')
g_turb = turbine('gas turbine')

CH4 = source('fuel source')
air = source('ambient air')

# waste heat recovery
suph = heat_exchanger('superheater')
@author: Malte Fritz
"""

from tespy.networks import network
from tespy.components import sink, source, solar_collector
from tespy.connections import connection

import numpy as np
from matplotlib import pyplot as plt
import pandas as pd
from mpl_toolkits.mplot3d import Axes3D

# %% network

fluid_list = ['H2O']
nw = network(fluids=fluid_list, p_unit='bar', T_unit='C')

# %% components

# sinks & sources
back = source('to collector')
feed = sink('from collector')

# collector
coll = solar_collector(label='solar thermal collector')

# %% connections

b_c = connection(back, 'out1', coll, 'in1')
c_f = connection(coll, 'out1', feed, 'in1')
Example #11
0
# -*- coding: utf-8 -*-
from tespy.networks import network
from tespy.components import (
    sink, source, compressor, turbine, condenser, combustion_chamber, pump,
    heat_exchanger, drum, cycle_closer)
from tespy.connections import connection, bus, ref

# %% network
fluid_list = ['Ar', 'N2', 'O2', 'CO2', 'CH4', 'H2O']

nw = network(fluids=fluid_list, p_unit='bar', T_unit='C', h_unit='kJ / kg')

# %% components
# gas turbine part
comp = compressor('compressor')
c_c = combustion_chamber('combustion')
g_turb = turbine('gas turbine')

CH4 = source('fuel source')
air = source('ambient air')

# waste heat recovery
suph = heat_exchanger('superheater')
evap = heat_exchanger('evaporator')
dr = drum('drum')
eco = heat_exchanger('economizer')
dh_whr = heat_exchanger('waste heat recovery')
ch = sink('chimney')

# steam turbine part
turb = turbine('steam turbine')
Example #12
0
from tespy.connections import connection
from tespy.components import source, sink, pipe
from tespy.networks import network

import numpy as np
from matplotlib import pyplot as plt

nw = network(['water'], p_unit='bar', T_unit='C', h_unit='kJ / kg')

# %% components
pi = pipe('pipe')
si = sink('sink')
so = source('source')

# %% connections

a = connection(so, 'out1', pi, 'in1')
b = connection(pi, 'out1', si, 'in1')

nw.add_conns(a, b)

# %% connection parameters

a.set_attr(h=40, fluid={'water': 1}, p=1, m=10)


# %% component parameters

pi.set_attr(ks=1e-5, L=100, D='var', Q=0)

# %% solve
Example #13
0
from tespy.connections import connection, ref
from tespy.components import (
    source,
    sink,
    pump,
    splitter,
    merge,
    heat_exchanger_simple,
    cycle_closer,
)
from tespy.tools import char_line, dc_cc
import numpy as np


# %% network
btes = network(fluids=["water"], T_unit="K", p_unit="bar", h_unit="kJ / kg")

# %% components
fc = cycle_closer("cycle closer")
pu = pump("pump")
sp = splitter("splitter", num_out=3)

# bhe:
bhe1 = heat_exchanger_simple("BHE1")
bhe2 = heat_exchanger_simple("BHE2")
bhe3 = heat_exchanger_simple("BHE3")

mg = merge("merge", num_in=3)
cons = heat_exchanger_simple("consumer")

## components paramerization
Example #14
0
class HeatPump(object):
    # define the structure of heat pump

    # %% network

    nw = network(fluids=['water', 'NH3', 'air'],
                 T_unit='C',
                 p_unit='bar',
                 h_unit='kJ / kg',
                 m_unit='kg / s')

    # %% components

    # sources & sinks

    cc = cycle_closer('coolant cycle closer')
    cb = source('consumer back flow')
    cf = sink('consumer feed flow')
    amb = source('ambient air')
    amb_out1 = sink('sink ambient 1')
    amb_out2 = sink('sink ambient 2')

    # ambient air system

    sp = splitter('splitter')
    pu = pump('pump')

    # consumer system

    cd = condenser('condenser')
    dhp = pump('district heating pump')
    cons = heat_exchanger_simple('consumer')

    # evaporator system

    ves = valve('valve')
    dr = drum('drum')
    ev = heat_exchanger('evaporator')
    su = heat_exchanger('superheater')
    erp = pump('evaporator reciculation pump')

    # compressor-system

    cp1 = compressor('compressor 1')
    cp2 = compressor('compressor 2')
    ic = heat_exchanger('intercooler')

    # %% connections

    # consumer system

    c_in_cd = connection(cc, 'out1', cd, 'in1')
    cb_dhp = connection(cb, 'out1', dhp, 'in1')
    dhp_cd = connection(dhp, 'out1', cd, 'in2')
    cd_cons = connection(cd, 'out2', cons, 'in1')
    cons_cf = connection(cons, 'out1', cf, 'in1')
    nw.add_conns(c_in_cd, cb_dhp, dhp_cd, cd_cons, cons_cf)

    # connection condenser - evaporator system

    cd_ves = connection(cd, 'out1', ves, 'in1')
    nw.add_conns(cd_ves)

    # evaporator system

    ves_dr = connection(ves, 'out1', dr, 'in1')
    dr_erp = connection(dr, 'out1', erp, 'in1')
    erp_ev = connection(erp, 'out1', ev, 'in2')
    ev_dr = connection(ev, 'out2', dr, 'in2')
    dr_su = connection(dr, 'out2', su, 'in2')
    nw.add_conns(ves_dr, dr_erp, erp_ev, ev_dr, dr_su)
    amb_p = connection(amb, 'out1', pu, 'in1')
    p_sp = connection(pu, 'out1', sp, 'in1')
    sp_su = connection(sp, 'out1', su, 'in1')
    su_ev = connection(su, 'out1', ev, 'in1')
    ev_amb_out = connection(ev, 'out1', amb_out1, 'in1')
    nw.add_conns(amb_p, p_sp, sp_su, su_ev, ev_amb_out)

    # connection evaporator system - compressor system

    su_cp1 = connection(su, 'out2', cp1, 'in1')
    nw.add_conns(su_cp1)

    # compressor-system

    cp1_he = connection(cp1, 'out1', ic, 'in1')
    he_cp2 = connection(ic, 'out1', cp2, 'in1')
    cp2_c_out = connection(cp2, 'out1', cc, 'in1')
    sp_ic = connection(sp, 'out2', ic, 'in2')
    ic_out = connection(ic, 'out2', amb_out2, 'in1')
    nw.add_conns(cp1_he, he_cp2, sp_ic, ic_out, cp2_c_out)

    def __init__(self, q, eff, Temp):
        r"""
        :param Temp:
        :param q: q output
        :param eff: efficient of each part in pump
        """
        self.q = q
        self.eff = eff
        self.Temp = Temp

    def caculation(self):
        self.set_attr()

        HeatPump.nw.solve('design')
        P = [
            HeatPump.cp1.P.val, HeatPump.cp2.P.val, HeatPump.erp.P.val,
            HeatPump.pu.P.val
        ]
        P_total = sum(map(abs, P))
        P = list(map(abs, P))

        COP = self.q / P_total
        # T = [HeatPump.su_cp1.T.val, HeatPump.cp2_c_out.T.val, HeatPump.cd_ves.T.val, HeatPump.su_ev.T.val]
        # p = [HeatPump.su_cp1.p.val, HeatPump.cp2_c_out.p.val, HeatPump.cd_ves.p.val, HeatPump.su_ev.p.val,
        #      HeatPump.cp1_he.p.val]

        return P, P_total, COP

    def set_attr(self):
        r"""
        # %% set the attribution of the heat pump
        :return: heat output of the heat pump
        """

        HeatPump.cd.set_attr(pr1=0.99,
                             pr2=0.99,
                             ttd_u=15,
                             design=['pr2', 'ttd_u'],
                             offdesign=['zeta2', 'kA'])
        HeatPump.dhp.set_attr(eta_s=self.eff,
                              design=['eta_s'],
                              offdesign=['eta_s_char'])
        HeatPump.cons.set_attr(pr=0.99, design=['pr'], offdesign=['zeta'])

        # water pump

        HeatPump.pu.set_attr(eta_s=self.eff,
                             design=['eta_s'],
                             offdesign=['eta_s_char'])

        # evaporator system

        kA_char1 = ldc('heat exchanger', 'kA_char1', 'DEFAULT', char_line)
        kA_char2 = ldc('heat exchanger', 'kA_char2', 'EVAPORATING FLUID',
                       char_line)
        HeatPump.ev.set_attr(pr1=0.98,
                             pr2=0.99,
                             ttd_l=5,
                             kA_char1=kA_char1,
                             kA_char2=kA_char2,
                             design=['pr1', 'ttd_l'],
                             offdesign=['zeta1', 'kA'])

        HeatPump.su.set_attr(pr1=0.98,
                             pr2=0.99,
                             ttd_u=2,
                             design=['pr1', 'pr2', 'ttd_u'],
                             offdesign=['zeta1', 'zeta2', 'kA'])

        HeatPump.erp.set_attr(eta_s=self.eff,
                              design=['eta_s'],
                              offdesign=['eta_s_char'])

        # compressor system

        HeatPump.cp1.set_attr(eta_s=self.eff,
                              design=['eta_s'],
                              offdesign=['eta_s_char'])
        HeatPump.cp2.set_attr(eta_s=self.eff,
                              pr=3,
                              design=['eta_s'],
                              offdesign=['eta_s_char'])
        HeatPump.ic.set_attr(pr1=0.99,
                             pr2=0.98,
                             design=['pr1', 'pr2'],
                             offdesign=['zeta1', 'zeta2', 'kA'])

        # %% connection parametrization

        # condenser system

        HeatPump.c_in_cd.set_attr(fluid={'air': 0, 'NH3': 1, 'water': 0})
        HeatPump.cb_dhp.set_attr(T=20,
                                 p=10,
                                 fluid={
                                     'air': 0,
                                     'NH3': 0,
                                     'water': 1
                                 })
        HeatPump.cd_cons.set_attr(T=self.Temp)
        HeatPump.cons_cf.set_attr(h=ref(HeatPump.cb_dhp, 1, 0),
                                  p=ref(HeatPump.cb_dhp, 1, 0))

        # evaporator system cold side

        HeatPump.erp_ev.set_attr(m=ref(HeatPump.ves_dr, 1.25, 0), p0=5)
        HeatPump.su_cp1.set_attr(p0=5, h0=1700)

        # evaporator system hot side

        # pumping at constant rate in partload

        HeatPump.amb_p.set_attr(T=12,
                                p=2,
                                fluid={
                                    'air': 0,
                                    'NH3': 0,
                                    'water': 1
                                },
                                offdesign=['v'])
        HeatPump.sp_su.set_attr(offdesign=['v'])
        HeatPump.ev_amb_out.set_attr(p=2, T=9, design=['T'])

        # compressor-system

        HeatPump.he_cp2.set_attr(Td_bp=5, p0=20, design=['Td_bp'])
        HeatPump.ic_out.set_attr(T=15, design=['T'])

        # %% key paramter

        HeatPump.cons.set_attr(Q=self.q)
# Execute this file to generate TESPy network csv files
from tespy.networks import network
from tespy.components import (sink, source, splitter, merge,
                              pump, heat_exchanger_simple)
from tespy.connections import connection, ref, bus
from tespy.tools.characteristics import char_line
from tespy.tools.data_containers import dc_cc

import numpy as np

# %% network
btes = network(fluids=['water'],
                   T_unit='K',
                   p_unit='bar',
                   h_unit='kJ / kg',
                   T_range=[273.25, 373.15],
                   p_range=[1, 20],
                   h_range=[1, 1000])

# %% components
fc_in = source('from consumer inflow')
fc_out = sink('from consumer outflow')

pu = pump('pump')

sp = splitter('splitter', num_out=3)

# bhe:
bhe_name = 'BHE1'
assert 'BHE1' in bhe_name, "BHE should be named with 'BHE1'"
# -*- coding: utf-8 -*-
from tespy.networks import network
from tespy.components import sink, source, combustion_chamber
from tespy.connections import connection

# %% network

# define full fluid list for the network's variable space
fluid_list = ['Ar', 'N2', 'O2', 'CO2', 'CH4', 'H2O']

# define unit systems and fluid property ranges
nw = network(fluids=fluid_list, p_unit='bar', T_unit='C', p_range=[0.5, 10])

# %% components

# sinks & sources
amb = source('ambient')
sf = source('fuel')
fg = sink('flue gas outlet')

# combustion chamber
comb=combustion_chamber(label='combustion chamber')

# %% connections

amb_comb = connection(amb, 'out1', comb, 'in1')
sf_comb = connection(sf, 'out1', comb, 'in2')
comb_fg = connection(comb, 'out1', fg, 'in1')

nw.add_conns(sf_comb, amb_comb, comb_fg)
Example #17
0
 def create_network(self):
     self.nw = nwk.network(fluids=[])
     for c in self.conns:
         self.nw.add_conns(c)
    def __init__(self, working_fluid):

        self.working_fluid = working_fluid
        fluids = ['water', self.working_fluid, 'air']
        self.nw = network(fluids=fluids)
        self.nw.set_attr(p_unit='bar', T_unit='C', h_unit='kJ / kg')

        # geo parameters

        geo_mass_flow = 210
        geo_steam_share = 0.1
        T_brine_in = 144.8
        T_reinjection = 70.8

        # ambient parameters

        T_amb = 0
        p_amb = 1

        # main components

        geo_steam = source('steam source')
        geo_brine = source('brine source')
        geo_reinjection = sink('reinjection well')

        air_in = source('ambient air source')
        air_out = sink('ambient air sink')
        air_cond = condenser('main condenser')

        orc_cc = cycle_closer('orc cycle closer')

        evap_steam = condenser('steam evaporator')
        evap_splitter = splitter('splitter evaporation')
        evap_merge = merge('merge evaporation')
        evap_steam = condenser('steam evaporator')
        geo_steam_pump = pump('geosteam condensate pump')
        evap_brine = heat_exchanger('brine evaporator')
        dr = drum('drum')

        eco = heat_exchanger('economiser')
        feed_water_pump = pump('feed water pump')
        geo_merge = merge('brine merge')

        tur = turbine('turbine')

        ls_valve = valve('live steam valve')

        ihe = heat_exchanger('internal heat exchanger')

        # busses
        power_bus = bus('power output')
        power_bus.add_comps({
            'c': tur,
            'char': -1
        }, {
            'c': feed_water_pump,
            'char': -1
        }, {
            'c': geo_steam_pump,
            'char': -1
        })

        geothermal_bus = bus('thermal input')
        geothermal_bus.add_comps({
            'c': eco,
            'char': -1
        }, {
            'c': evap_brine,
            'char': -1
        }, {
            'c': evap_steam,
            'char': -1
        })

        self.nw.add_busses(power_bus, geothermal_bus)

        # turbine to condenser
        ls_in = connection(orc_cc, 'out1', ls_valve, 'in1')
        lsv_tur = connection(ls_valve, 'out1', tur, 'in1')
        tur_ihe = connection(tur, 'out1', ihe, 'in1')
        ihe_cond = connection(ihe, 'out1', air_cond, 'in1')
        self.nw.add_conns(ls_in, lsv_tur, tur_ihe, ihe_cond)

        # condenser to steam generator
        cond_fwp = connection(air_cond, 'out1', feed_water_pump, 'in1')
        fwp_ihe = connection(feed_water_pump, 'out1', ihe, 'in2')
        self.nw.add_conns(cond_fwp, fwp_ihe)

        # steam generator
        ihe_eco = connection(ihe, 'out2', eco, 'in2')
        eco_dr = connection(eco, 'out2', dr, 'in1')
        dr_esp = connection(dr, 'out1', evap_splitter, 'in1')
        esp_eb = connection(evap_splitter, 'out1', evap_brine, 'in2')
        esp_es = connection(evap_splitter, 'out2', evap_steam, 'in2')
        eb_em = connection(evap_brine, 'out2', evap_merge, 'in1')
        es_em = connection(evap_steam, 'out2', evap_merge, 'in2')
        em_dr = connection(evap_merge, 'out1', dr, 'in2')
        ls_out = connection(dr, 'out2', orc_cc, 'in1')
        self.nw.add_conns(ihe_eco, eco_dr, dr_esp, esp_eb, esp_es, eb_em,
                          es_em, em_dr, ls_out)

        # air cold side
        air_cold = connection(air_in, 'out1', air_cond, 'in2')
        air_hot = connection(air_cond, 'out2', air_out, 'in1')
        self.nw.add_conns(air_cold, air_hot)

        # geo source
        gs_es = connection(geo_steam,
                           'out1',
                           evap_steam,
                           'in1',
                           label='geosteam')
        es_gsp = connection(evap_steam, 'out1', geo_steam_pump, 'in1')
        gsp_gm = connection(geo_steam_pump, 'out1', geo_merge, 'in1')
        gb_eb = connection(geo_brine,
                           'out1',
                           evap_brine,
                           'in1',
                           label='geobrine')
        eb_gm = connection(evap_brine, 'out1', geo_merge, 'in2')
        self.nw.add_conns(gs_es, es_gsp, gsp_gm, gb_eb, eb_gm)

        gm_eco = connection(geo_merge, 'out1', eco, 'in1')
        eco_gr = connection(eco,
                            'out1',
                            geo_reinjection,
                            'in1',
                            label='reinjection')
        self.nw.add_conns(gm_eco, eco_gr)

        # fluid settings
        ihe_eco.set_attr(fluid={self.working_fluid: 1, 'air': 0, 'water': 0})
        air_cold.set_attr(fluid={self.working_fluid: 0, 'air': 1, 'water': 0})
        gs_es.set_attr(fluid={self.working_fluid: 0, 'air': 0, 'water': 1})
        gb_eb.set_attr(fluid={self.working_fluid: 0, 'air': 0, 'water': 1})

        # connection parameters
        ls_stable_p0 = PSI('P', 'T', T_brine_in + 273.15, 'Q', 1,
                           self.working_fluid) / 1e5
        lsv_tur.set_attr(p0=ls_stable_p0)
        ws_stable_h0 = (
            PSI('H', 'T', T_amb + 273.15, 'Q', 1, self.working_fluid) + 0.5 *
            (PSI('H', 'T', T_brine_in + 273.15, 'Q', 1, self.working_fluid) -
             PSI('H', 'T', T_amb + 273.15, 'Q', 1, self.working_fluid))) / 1e3
        tur_ihe.set_attr(h=ws_stable_h0)
        ihe_cond.set_attr(
            Td_bp=2,
            design=['Td_bp'],
            p0=PSI('P', 'T', T_amb + 273.15, 'Q', 1, self.working_fluid) / 1e5)
        fwp_ihe.set_attr(h=ref(cond_fwp, 1, 1e3))

        # steam generator
        gs_es.set_attr(m=geo_mass_flow * geo_steam_share,
                       T=T_brine_in,
                       x=1,
                       p0=5)
        gb_eb.set_attr(m=geo_mass_flow * (1 - geo_steam_share),
                       T=T_brine_in,
                       x=0)

        em_dr.set_attr()
        eb_em.set_attr(x=0.5)
        es_em.set_attr(x=0.5, design=['x'])
        eb_gm.set_attr(T=T_brine_in - 20)

        eco_dr.set_attr(Td_bp=-2)

        # main condenser
        air_cold.set_attr(p=p_amb, T=T_amb)
        air_hot.set_attr(T=15)

        # component parameters
        # turbines
        tur.set_attr(design=['eta_s'], offdesign=['cone', 'eta_s_char'])
        ls_valve.set_attr(pr=1, design=['pr'])
        # condensing
        ihe.set_attr(pr1=1, pr2=1, offdesign=['kA_char'])
        air_cond.set_attr(pr1=1,
                          pr2=1,
                          ttd_u=10,
                          design=['ttd_u'],
                          offdesign=['kA_char'])
        feed_water_pump.set_attr(design=['eta_s'], offdesign=['eta_s_char'])

        # steam generator
        evap_steam.set_attr(
            pr1=0.99,
            offdesign=['kA_char'])  # no pr2 due to drum pressure balance
        evap_brine.set_attr(
            pr1=1, ttd_l=10,
            offdesign=['kA_char'])  # no pr2 due to drum pressure balance
        eco.set_attr(pr1=1, pr2=1)
        geo_steam_pump.set_attr(eta_s=0.75,
                                design=['eta_s'],
                                offdesign=['eta_s_char'])

        self.nw.set_attr(iterinfo=False)
        self.nw.solve('design')
        self.nw.print_results()
        tur.set_attr(eta_s=0.9)
        feed_water_pump.set_attr(eta_s=0.75)
        tur_ihe.set_attr(h=None)
        fwp_ihe.set_attr(h=None)
        eb_gm.set_attr(T=None)
Example #19
0
# Execute this file to generate TESPy network csv files
from tespy.networks import network
from tespy.components import sink, source, splitter, merge, pump, heat_exchanger_simple
from tespy.connections import connection, ref, bus
from tespy.tools.characteristics import char_line
from tespy.tools.data_containers import dc_cc

import numpy as np

# %% network
btes = network(
    fluids=["water"],
    T_unit="K",
    p_unit="bar",
    h_unit="kJ / kg",
    T_range=[273.25, 373.15],
    p_range=[1, 20],
    h_range=[1, 1000],
)

# %% components
fc_in = source("from consumer inflow")
fc_out = sink("from consumer outflow")

pu = pump("pump")

sp = splitter("splitter", num_out=3)

# bhe:
bhe_name = "BHE1"