from autolens.fit.plotters import masked_imaging_fit_plotters
from test import simulate_util

# In this tutorial, we'll introduce a new pixelization, called an adaptive-pixelization. This pixelization doesn't use
# uniform grid of rectangular pixels, but instead uses ir'Voronoi' pixels. So, why would we want to do that?
# Lets take another look at the rectangular grid, and think about its weakness.

# Lets quickly remind ourselves of the image, and the 3.0" circular mask we'll use to mask it.
imaging = simulate_util.load_test_imaging(
    data_type="lens_light_dev_vaucouleurs", data_resolution="lsst")
mask = al.mask.elliptical(
    shape=imaging.shape,
    pixel_scales=imaging.pixel_scales,
    major_axis_radius=3.0,
    axis_ratio=1.0,
    phi=0.0,
    centre=(0.0, 0.0),
)

# aplt.imaging.subplot(imaging=imaging, mask=mask, zoom_around_mask=True, aspect='equal')
# aplt.imaging.subplot(imaging=imaging, mask=mask, zoom_around_mask=True, aspect='auto')

# aplt.imaging.image(imaging=imaging, mask=mask, zoom_around_mask=True, aspect='square')
# aplt.imaging.image(imaging=imaging, mask=mask, zoom_around_mask=True, aspect='equal')

# The lines of code below do everything we're used to, that is, setup an image and its grid, mask it, trace it
# via a tracer, setup the rectangular mapper, etc.
lens_galaxy = al.Galaxy(mass=al.mp.EllipticalIsothermal(
    centre=(1.0, 1.0), einstein_radius=1.6, axis_ratio=0.7, phi=45.0))
source_galaxy = al.Galaxy(
    pixelization=al.pix.VoronoiMagnification(shape=(20, 20)),
Example #2
0
from test import simulate_util
from autolens.plot import plotters

# In this tutorial, we'll introduce a new pixelization, called an adaptive-pixelization. This pixelization doesn't use
# uniform grid of rectangular pixels, but instead uses ir'Voronoi' pixels. So, why would we want to do that?
# Lets take another look at the rectangular grid, and think about its weakness.

# Lets quickly remind ourselves of the image, and the 3.0" circular mask we'll use to mask it.
imaging = simulate_util.load_test_imaging(
    data_type="lens_light_dev_vaucouleurs", data_resolution="lsst")
array = imaging.image

mask = al.Mask.circular(
    shape_2d=imaging.shape_2d,
    pixel_scales=imaging.pixel_scales,
    radius=5.0,
    centre=(0.0, 0.0),
)
aplt_array.array(array=array,
                 mask=mask,
                 positions=[[(1.0, 1.0)]],
                 centres=[[(0.0, 0.0)]])

imaging = simulate_util.load_test_imaging(
    data_type="lens_sis__source_smooth__offset_centre", data_resolution="lsst")
array = imaging.image

mask = al.Mask.circular(
    shape_2d=imaging.shape_2d,
    pixel_scales=imaging.pixel_scales,
    radius=5.0,