from autolens.fit.plotters import masked_imaging_fit_plotters from test import simulate_util # In this tutorial, we'll introduce a new pixelization, called an adaptive-pixelization. This pixelization doesn't use # uniform grid of rectangular pixels, but instead uses ir'Voronoi' pixels. So, why would we want to do that? # Lets take another look at the rectangular grid, and think about its weakness. # Lets quickly remind ourselves of the image, and the 3.0" circular mask we'll use to mask it. imaging = simulate_util.load_test_imaging( data_type="lens_light_dev_vaucouleurs", data_resolution="lsst") mask = al.mask.elliptical( shape=imaging.shape, pixel_scales=imaging.pixel_scales, major_axis_radius=3.0, axis_ratio=1.0, phi=0.0, centre=(0.0, 0.0), ) # aplt.imaging.subplot(imaging=imaging, mask=mask, zoom_around_mask=True, aspect='equal') # aplt.imaging.subplot(imaging=imaging, mask=mask, zoom_around_mask=True, aspect='auto') # aplt.imaging.image(imaging=imaging, mask=mask, zoom_around_mask=True, aspect='square') # aplt.imaging.image(imaging=imaging, mask=mask, zoom_around_mask=True, aspect='equal') # The lines of code below do everything we're used to, that is, setup an image and its grid, mask it, trace it # via a tracer, setup the rectangular mapper, etc. lens_galaxy = al.Galaxy(mass=al.mp.EllipticalIsothermal( centre=(1.0, 1.0), einstein_radius=1.6, axis_ratio=0.7, phi=45.0)) source_galaxy = al.Galaxy( pixelization=al.pix.VoronoiMagnification(shape=(20, 20)),
from test import simulate_util from autolens.plot import plotters # In this tutorial, we'll introduce a new pixelization, called an adaptive-pixelization. This pixelization doesn't use # uniform grid of rectangular pixels, but instead uses ir'Voronoi' pixels. So, why would we want to do that? # Lets take another look at the rectangular grid, and think about its weakness. # Lets quickly remind ourselves of the image, and the 3.0" circular mask we'll use to mask it. imaging = simulate_util.load_test_imaging( data_type="lens_light_dev_vaucouleurs", data_resolution="lsst") array = imaging.image mask = al.Mask.circular( shape_2d=imaging.shape_2d, pixel_scales=imaging.pixel_scales, radius=5.0, centre=(0.0, 0.0), ) aplt_array.array(array=array, mask=mask, positions=[[(1.0, 1.0)]], centres=[[(0.0, 0.0)]]) imaging = simulate_util.load_test_imaging( data_type="lens_sis__source_smooth__offset_centre", data_resolution="lsst") array = imaging.image mask = al.Mask.circular( shape_2d=imaging.shape_2d, pixel_scales=imaging.pixel_scales, radius=5.0,