Example #1
0
def test_sortagrad_trainable_with_batch_bins(module):
    args = make_arg(sortagrad=1)
    idim = 20
    odim = 5
    dummy_json = make_dummy_json_st(
        4, [10, 20], [10, 20], [10, 20], idim=idim, odim=odim
    )
    if module == "pytorch":
        import espnet.nets.pytorch_backend.e2e_st as m
    else:
        raise NotImplementedError
    batch_elems = 2000
    batchset = make_batchset(dummy_json, batch_bins=batch_elems, shortest_first=True)
    for batch in batchset:
        n = 0
        for uttid, info in batch:
            ilen = int(info["input"][0]["shape"][0])
            olen = int(info["output"][0]["shape"][0])
            n += ilen * idim + olen * odim
        assert olen < batch_elems

    model = m.E2E(20, 5, args)
    for batch in batchset:
        loss = model(*convert_batch(batch, module, idim=20, odim=5))
        if isinstance(loss, tuple):
            # chainer return several values as tuple
            loss[0].backward()  # trainable
        else:
            loss.backward()  # trainable
    with torch.no_grad(), chainer.no_backprop_mode():
        in_data = np.random.randn(100, 20)
        model.translate(in_data, args, args.char_list)
Example #2
0
def test_gradient_noise_injection(module):
    args = make_arg(grad_noise=True)
    args_org = make_arg()
    dummy_json = make_dummy_json_st(2, [10, 20], [10, 20], [10, 20], idim=20, odim=5)
    if module == "pytorch":
        import espnet.nets.pytorch_backend.e2e_st as m
    else:
        raise NotImplementedError
    batchset = make_batchset(dummy_json, 2, 2**10, 2**10, shortest_first=True)
    model = m.E2E(20, 5, args)
    model_org = m.E2E(20, 5, args_org)
    for batch in batchset:
        loss = model(*convert_batch(batch, module, idim=20, odim=5))
        loss_org = model_org(*convert_batch(batch, module, idim=20, odim=5))
        loss.backward()
        grad = [param.grad for param in model.parameters()][10]
        loss_org.backward()
        grad_org = [param.grad for param in model_org.parameters()][10]
        assert grad[0] != grad_org[0]
Example #3
0
def test_sortagrad_trainable(module):
    args = make_arg(sortagrad=1)
    dummy_json = make_dummy_json_st(4, [10, 20], [10, 20], [10, 20], idim=20, odim=5)
    if module == "pytorch":
        import espnet.nets.pytorch_backend.e2e_st as m
    else:
        raise NotImplementedError
    batchset = make_batchset(dummy_json, 2, 2**10, 2**10, shortest_first=True)
    model = m.E2E(20, 5, args)
    for batch in batchset:
        loss = model(*convert_batch(batch, module, idim=20, odim=5))
        if isinstance(loss, tuple):
            # chainer return several values as tuple
            loss[0].backward()  # trainable
        else:
            loss.backward()  # trainable
    with torch.no_grad(), chainer.no_backprop_mode():
        in_data = np.random.randn(50, 20)
        model.translate(in_data, args, args.char_list)
Example #4
0
def test_sortagrad_trainable_with_batch_frames(module):
    args = make_arg(sortagrad=1)
    idim = 20
    odim = 5
    dummy_json = make_dummy_json_st(4, [10, 20], [10, 20], [10, 20],
                                    idim=idim,
                                    odim=odim)
    if module == "pytorch":
        import espnet.nets.pytorch_backend.e2e_st as m
    else:
        raise NotImplementedError
    batch_frames_in = 50
    batch_frames_out = 50
    batchset = make_batchset(dummy_json,
                             batch_frames_in=batch_frames_in,
                             batch_frames_out=batch_frames_out,
                             shortest_first=True)
    for batch in batchset:
        i = 0
        o = 0
        for uttid, info in batch:
            i += int(info['input'][0]['shape'][0])
            o += int(info['output'][0]['shape'][0])
        assert i <= batch_frames_in
        assert o <= batch_frames_out

    model = m.E2E(20, 5, args)
    for batch in batchset:
        loss = model(*convert_batch(batch, module, idim=20, odim=5))
        if isinstance(loss, tuple):
            # chainer return several values as tuple
            loss[0].backward()  # trainable
        else:
            loss.backward()  # trainable
    with torch.no_grad(), chainer.no_backprop_mode():
        in_data = np.random.randn(100, 20)
        model.translate(in_data, args, args.char_list)