# words.append(a+"_"+n+"_l2") #runs pca on the smaller matrix we construct.... #################### B = [] for word in words: if word in vecs: B.append(vecs[word]) elif "avg" in word: tokens = word.split('_') avg = (vecs[tokens[0]] + vecs[tokens[1]]) / 2.0 B.append(avg) elif "l2" in word: tokens = word.split('_') B.append(tb.local_knn_pred(vecs, tokens[0], tokens[1], "norm")) elif "cos" in word: tokens = word.split('_') B.append(tb.local_knn_pred(vecs, tokens[0], tokens[1], "cos")) elif "svr" in word: tokens = word.split('_') B.append(tnn.pred(vecs[tokens[0]], vecs[tokens[1]])) B = np.matrix(B) # add other non-plotted bigrams to the matrix before running PCA B = np.concatenate((B, wordVecsMatrix[1:500, :])) print "Running PCA" pca.fit(B) B = pca.transform(B) #######################
# words.append(a+"_"+n+"_cos") # words.append(a+"_"+n+"_l2") #runs pca on the smaller matrix we construct.... #################### B = [] for word in words: if word in vecs: B.append(vecs[word]) elif "avg" in word: tokens = word.split('_') avg = (vecs[tokens[0]] + vecs[tokens[1]]) / 2.0 B.append(avg) elif "l2" in word: tokens = word.split('_') B.append(tb.local_knn_pred(vecs, tokens[0], tokens[1], "norm")) elif "cos" in word: tokens = word.split('_') B.append(tb.local_knn_pred(vecs, tokens[0], tokens[1], "cos")) elif "svr" in word: tokens = word.split('_') B.append(tnn.pred(vecs[tokens[0]], vecs[tokens[1]])) B = np.matrix(B) # add other non-plotted bigrams to the matrix before running PCA B = np.concatenate((B, wordVecsMatrix[1:500, :])) print "Running PCA" pca.fit(B) B = pca.transform(B) #######################
def predict(word1, word2): return tb.local_knn_pred(word_vectors, word1, word2, "norm")
def predict (word1, word2): return tb.local_knn_pred(word_vectors, word1, word2, "norm")