def main(): print(sys.argv) print(SENDGRID_KEY) print(BUILD_ID) print(USER_REPO) print(USER_BRANCH) print(USER_TARGET) print(USER_LIVE) print(ARTIFACT_DIR) print(REQUESTED_FOR_EMAIL) print(ACCOUNT_KEY) # Upload results to storage account, container container = '' try: print('Uploading test results to storage account...') container = get_container_name() upload_files(container) except Exception: print(traceback.format_exc()) # Collect statistics testdata = test_data.TestData(ARTIFACT_DIR) testdata.collect() # Write database write_db() # Send email send_email(container, testdata)
def main(): print('Enter main()') print(sys.argv) print(SENDGRID_KEY) print(BUILD_ID) print(USER_REPO) print(USER_BRANCH) print(USER_TARGET) print(USER_LIVE) print(ARTIFACT_DIR) print(REQUESTED_FOR_EMAIL) print(ACCOUNT_KEY) print(COMMIT_ID) print(DB_PWD) # Upload results to storage account, container container = '' try: print('Uploading test results to storage account...') container = get_container_name() upload_files(container) except Exception: print(traceback.format_exc()) # Collect statistics testdata = test_data.TestData(ARTIFACT_DIR) testdata.collect() # Send email try: send_email(container, testdata) except Exception: print(traceback.format_exc()) # Generate index.html try: container_url = 'https://clitestresultstac.blob.core.windows.net/' + container generate_index.generate(container, container_url, testdata, USER_REPO, USER_BRANCH, COMMIT_ID, USER_LIVE) except Exception: print(traceback.format_exc()) # Write database try: write_db(container, testdata) except Exception: print(traceback.format_exc()) print('Exit main()')
def main(): logger.warning('Enter main()') logger.warning(sys.argv) logger.warning(SENDGRID_KEY) logger.warning(BUILD_ID) logger.warning(USER_REPO) logger.warning(USER_BRANCH) logger.warning(USER_TARGET) logger.warning(USER_LIVE) logger.warning(ARTIFACT_DIR) logger.warning(REQUESTED_FOR_EMAIL) logger.warning(ACCOUNT_KEY) logger.warning(COMMIT_ID) logger.warning(DB_PWD) # Upload results to storage account, container container = '' try: logger.warning('Uploading test results to storage account...') container = get_container_name() upload_files(container) except Exception: logger.exception(traceback.format_exc()) # Collect statistics testdata = test_data.TestData(ARTIFACT_DIR) testdata.collect() # Generate index.html, send email try: # Generate index.html container_url = 'https://clitestresultstac.blob.core.windows.net/' + container html_content = generate_index.generate(container, container_url, testdata, USER_REPO, USER_BRANCH, COMMIT_ID, USER_LIVE, USER_TARGET) # Send email send_email(html_content) except Exception: logger.exception(traceback.format_exc()) # Write database # try: # write_db(container, testdata) # except Exception: # logger.exception(traceback.format_exc()) logger.warning('Exit main()')
def setUp(self): self.test_data = test_data.TestData()
return rtrs if __name__ == "__main__": class dummy_args(): skip_all_data = False skip_detail = False skip_msg_progress = False split = False time_start = None time_end = None print("Line-by-line split test") try: for line in td.TestData().data(): if "transfer" not in line: print(proton_split(line)) else: pass # splitter does not split transfers pass except: traceback.print_exc(file=sys.stdout) pass print("Canned data parse test") data = td.TestData().data() log_index = 0 # from file for router A instance = 0 # all from router instance 0 comn = common.Common() comn.args = dummy_args()
import test_data as data x = data.TestData(40, True) x.generate_data() print(f"Inputs: \n {x.inputs}") print(f"Targets: \n {x.targets}") a = [(1, 2, 3), (4, 5, 6), (7, 8, 9)] res = [x[0] for x in a] print(res)
def main(): log_new('_main') config = Config() parameters = get_parameters(config) screens_diff_dir = prepare_dir_structure(parameters, config) current_data = test_data.TestData(parameters.current_dir, config.RESULTS_EXTENSIONS) baseline_data = test_data.TestData(parameters.baseline_dir, config.RESULTS_EXTENSIONS) current_images = current_data.get_files('screens') current_images_dir = current_data.get_dir('screens') baseline_images = baseline_data.get_files('screens') baseline_images_dir = baseline_data.get_dir('screens') logg('current_images', current_images) logg('baseline_images', baseline_images) current_log = current_data.get_files('logs')[0] baseline_log = baseline_data.get_files('logs')[0] if parameters.test_name is None: # case of local run correct_images = [] else: current_scenario = current_data.get_files('scenario')[0] baseline_scenario = baseline_data.get_files('scenario')[0] correct_images = jsoner.create_correct_list(current_scenario, baseline_scenario) images_lists_diff = list_comparison.compare_lists(current_images, baseline_images, correct_images) log_diffs = log_comparison.compare_logs(current_log, baseline_log, correct_images, config) images_process_list = list_comparison.create_process_list( correct_images, images_lists_diff, current_images_dir, baseline_images_dir) images_diffs = image_comparison.compare_images(images_process_list, screens_diff_dir, parameters.rgb_threshold, parameters.size_threshold, config) stat, status = statistics.create_image_statistics(images_lists_diff, images_diffs) webreport = create_webreport(images_diffs, log_diffs, stat, status, parameters, config) save_file(os.path.join(config.TEMP_ARTIFACTS_DIR, 'report.html'), webreport) copy_directory(config.WEB_REPORT_LIB_DIR, config.TEMP_ARTIFACTS_WEBREPORT_LIB_DIR) copy_directory(config.TEMP_DATA_DIR, config.TEMP_ARTIFACTS_DATA_DIR) return 0
print(sys.argv) for i, arg in enumerate(sys.argv): if sys.argv[i] == '-kf': kfun = sys.argv[i + 1] opt = int(sys.argv[i + 2]) if sys.argv[i] == '-slack': slack = float(sys.argv[i + 1]) if sys.argv[i] == '-pid': plotId = int(sys.argv[i + 1]) # What kernel function to use kernel_function = lambda x, y: kf.functions[kfun](x, y, opt) # Number of training samples N = 200 # Generate our test data data = test_data.TestData(N, True) data.generate_data() # Initial guess of the alpha vector start = numpy.zeros(N, dtype='float64') upper_bound = slack # Lower and upper bounds for each value in alpha vector B = [(0, upper_bound) for b in range(N)] # Global variable for alpha, targets and support vectors nonZeroAlpha = [] target_values = [] support_vectors = [] bValue = 0 # Pre-compute the matrix P by multiplying the every combination of target values, t, and kernel K. preComputedMatrix = numpy.empty([N, N]) for i in range(N):