Example #1
0
def _aio_handle_tasklet(pool_params):
    args, tid, read_op = pool_params

    # Create schedule
    schedule = get_schedule(args, read_op)
    task_log(tid, f'schedule = {schedule}')
    task_barrier(aio_barrier, args.threads)

    # Run pre task
    task_log(tid, f'running pre-task')
    ctxt = schedule["pre"]((args, tid))
    task_barrier(aio_barrier, args.threads)

    # Run main tasks in a loop
    ctxt["main_task_sec"] = 0
    for i in range(args.loops):
        task_log(tid, f'running main task {i}')
        start_time = time.time()
        ctxt = schedule["main"]((args, tid, ctxt))
        task_barrier(aio_barrier, args.threads)
        stop_time = time.time()
        ctxt["main_task_sec"] += stop_time - start_time

    # Run post task
    task_log(tid, f'running post-task')
    ctxt = schedule["post"]((args, tid, ctxt))
    task_barrier(aio_barrier, args.threads)

    return ctxt["main_task_sec"], ctxt[
        "elapsed_sec"], ctxt["num_bytes"] * args.loops
Example #2
0
def pre_basic(args, tid, read_op):
    io_string = "Read" if read_op else "Write"
    num_bytes = os.path.getsize(args.read_file) if read_op else args.write_size
    file = args.read_file if read_op else f'{args.write_file}.{tid}'

    task_log(tid, f'Allocate tensor of size {num_bytes} bytes')
    buffer = torch.empty(num_bytes, dtype=torch.uint8, device='cpu').pin_memory()
    task_log(
        tid,
        f'{io_string} file {file} of size {num_bytes} bytes from buffer on device {buffer.device}'
    )

    ctxt = {}
    ctxt['file'] = file
    ctxt['num_bytes'] = num_bytes
    ctxt['buffer'] = buffer
    ctxt['elapsed_sec'] = 0

    return ctxt
Example #3
0
def pre_handle(args, tid, read_op):
    io_string = "Read" if read_op else "Write"
    num_bytes = os.path.getsize(args.read_file) if read_op else args.write_size
    file = args.read_file if read_op else f'{args.write_file}.{tid}'

    task_log(tid, f'Allocate tensor of size {num_bytes} bytes')
    if args.gpu:
        buffer = torch.empty(num_bytes, dtype=torch.uint8, device='cuda')
    else:
        buffer = torch.empty(num_bytes, dtype=torch.uint8,
                             device='cpu').pin_memory()
    task_log(
        tid,
        f'{io_string} file {file} of size {num_bytes} bytes from buffer on device {buffer.device}'
    )

    io_parallel = args.io_parallel if args.io_parallel else 1
    handle = AsyncIOBuilder().load().aio_handle(args.block_size,
                                                args.queue_depth,
                                                args.single_submit,
                                                args.overlap_events,
                                                io_parallel)
    task_log(tid, f'created deepspeed aio handle')

    ctxt = {}
    ctxt['file'] = file
    ctxt['num_bytes'] = num_bytes
    ctxt['handle'] = handle
    ctxt['buffer'] = buffer
    ctxt['elapsed_sec'] = 0

    return ctxt