def test_nonzero_locks(orig_tx, node, relayfee, use_height_lock): sequence_value = 1 if not use_height_lock: sequence_value |= SEQUENCE_LOCKTIME_TYPE_FLAG tx = CTransaction() tx.nVersion = 2 tx.vin = [ CTxIn(COutPoint(orig_tx.x16r, 0), n_sequence=sequence_value) ] tx.vout = [ CTxOut(int(orig_tx.vout[0].nValue - relayfee * COIN), CScript([b'a'])) ] tx.rehash() if orig_tx.hash in node.getrawmempool(): # sendrawtransaction should fail if the tx is in the mempool assert_raises_rpc_error(-26, NOT_FINAL_ERROR, node.sendrawtransaction, to_hex(tx)) else: # sendrawtransaction should succeed if the tx is not in the mempool node.sendrawtransaction(to_hex(tx)) return tx
def test_bip68_not_consensus(self): assert (get_bip9_status(self.nodes[0], 'csv')['status'] != 'active') txid = self.nodes[0].sendtoaddress(self.nodes[0].getnewaddress(), 2) tx1 = from_hex(CTransaction(), self.nodes[0].getrawtransaction(txid)) tx1.rehash() # Make an anyone-can-spend transaction tx2 = CTransaction() tx2.nVersion = 1 tx2.vin = [CTxIn(COutPoint(tx1.x16r, 0), n_sequence=0)] tx2.vout = [ CTxOut(int(tx1.vout[0].nValue - self.relayfee * COIN), CScript([b'a'])) ] # sign tx2 tx2_raw = self.nodes[0].signrawtransaction(to_hex(tx2))["hex"] tx2 = from_hex(tx2, tx2_raw) tx2.rehash() self.nodes[0].sendrawtransaction(to_hex(tx2)) # Now make an invalid spend of tx2 according to BIP68 sequence_value = 100 # 100 block relative locktime tx3 = CTransaction() tx3.nVersion = 2 tx3.vin = [CTxIn(COutPoint(tx2.x16r, 0), n_sequence=sequence_value)] tx3.vout = [ CTxOut(int(tx2.vout[0].nValue - self.relayfee * COIN), CScript([b'a'])) ] tx3.rehash() assert_raises_rpc_error(-26, NOT_FINAL_ERROR, self.nodes[0].sendrawtransaction, to_hex(tx3)) # make a block that violates bip68; ensure that the tip updates tip = int(self.nodes[0].getbestblockhash(), 16) block = create_block( tip, create_coinbase(self.nodes[0].getblockcount() + 1)) block.nVersion = 3 block.vtx.extend([tx1, tx2, tx3]) block.hashMerkleRoot = block.calc_merkle_root() block.rehash() block.solve() self.nodes[0].submitblock(to_hex(block)) assert_equal(self.nodes[0].getbestblockhash(), block.hash)
def test_disable_flag(self): # Create some unconfirmed inputs new_addr = self.nodes[0].getnewaddress() self.nodes[0].sendtoaddress(new_addr, 2) # send 2 RVN utxos = self.nodes[0].listunspent(0, 0) assert (len(utxos) > 0) utxo = utxos[0] tx1 = CTransaction() value = int(satoshi_round(utxo["amount"] - self.relayfee) * COIN) # Check that the disable flag disables relative locktime. # If sequence locks were used, this would require 1 block for the # input to mature. sequence_value = SEQUENCE_LOCKTIME_DISABLE_FLAG | 1 tx1.vin = [ CTxIn(COutPoint(int(utxo["txid"], 16), utxo["vout"]), n_sequence=sequence_value) ] tx1.vout = [CTxOut(value, CScript([b'a']))] tx1_signed = self.nodes[0].signrawtransaction(to_hex(tx1))["hex"] tx1_id = self.nodes[0].sendrawtransaction(tx1_signed) tx1_id = int(tx1_id, 16) # This transaction will enable sequence-locks, so this transaction should # fail tx2 = CTransaction() tx2.nVersion = 2 sequence_value = sequence_value & 0x7fffffff tx2.vin = [CTxIn(COutPoint(tx1_id, 0), n_sequence=sequence_value)] tx2.vout = [CTxOut(int(value - self.relayfee * COIN), CScript([b'a']))] tx2.rehash() assert_raises_rpc_error(-26, NOT_FINAL_ERROR, self.nodes[0].sendrawtransaction, to_hex(tx2)) # Setting the version back down to 1 should disable the sequence lock, # so this should be accepted. tx2.nVersion = 1 self.nodes[0].sendrawtransaction(to_hex(tx2))
def test_sequence_lock_unconfirmed_inputs(self): # Store height so we can easily reset the chain at the end of the test cur_height = self.nodes[0].getblockcount() # Create a mempool tx. txid = self.nodes[0].sendtoaddress(self.nodes[0].getnewaddress(), 2) tx1 = from_hex(CTransaction(), self.nodes[0].getrawtransaction(txid)) tx1.rehash() # Anyone-can-spend mempool tx. # Sequence lock of 0 should pass. tx2 = CTransaction() tx2.nVersion = 2 tx2.vin = [CTxIn(COutPoint(tx1.x16r, 0), n_sequence=0)] tx2.vout = [ CTxOut(int(tx1.vout[0].nValue - self.relayfee * COIN), CScript([b'a'])) ] tx2_raw = self.nodes[0].signrawtransaction(to_hex(tx2))["hex"] tx2 = from_hex(tx2, tx2_raw) tx2.rehash() self.nodes[0].sendrawtransaction(tx2_raw) # Create a spend of the 0th output of orig_tx with a sequence lock # of 1, and test what happens when submitting. # orig_tx.vout[0] must be an anyone-can-spend output def test_nonzero_locks(orig_tx, node, relayfee, use_height_lock): sequence_value = 1 if not use_height_lock: sequence_value |= SEQUENCE_LOCKTIME_TYPE_FLAG tx = CTransaction() tx.nVersion = 2 tx.vin = [ CTxIn(COutPoint(orig_tx.x16r, 0), n_sequence=sequence_value) ] tx.vout = [ CTxOut(int(orig_tx.vout[0].nValue - relayfee * COIN), CScript([b'a'])) ] tx.rehash() if orig_tx.hash in node.getrawmempool(): # sendrawtransaction should fail if the tx is in the mempool assert_raises_rpc_error(-26, NOT_FINAL_ERROR, node.sendrawtransaction, to_hex(tx)) else: # sendrawtransaction should succeed if the tx is not in the mempool node.sendrawtransaction(to_hex(tx)) return tx test_nonzero_locks(tx2, self.nodes[0], self.relayfee, use_height_lock=True) test_nonzero_locks(tx2, self.nodes[0], self.relayfee, use_height_lock=False) # Now mine some blocks, but make sure tx2 doesn't get mined. # Use prioritisetransaction to lower the effective feerate to 0 self.nodes[0].prioritisetransaction(txid=tx2.hash, fee_delta=int(-self.relayfee * COIN)) cur_time = int(time.time()) for _ in range(10): self.nodes[0].setmocktime(cur_time + 600) self.nodes[0].generate(1) cur_time += 600 assert (tx2.hash in self.nodes[0].getrawmempool()) test_nonzero_locks(tx2, self.nodes[0], self.relayfee, use_height_lock=True) test_nonzero_locks(tx2, self.nodes[0], self.relayfee, use_height_lock=False) # Mine tx2, and then try again self.nodes[0].prioritisetransaction(txid=tx2.hash, fee_delta=int(self.relayfee * COIN)) # Advance the time on the node so that we can test timelocks self.nodes[0].setmocktime(cur_time + 600) self.nodes[0].generate(1) assert (tx2.hash not in self.nodes[0].getrawmempool()) # Now that tx2 is not in the mempool, a sequence locked spend should # succeed tx3 = test_nonzero_locks(tx2, self.nodes[0], self.relayfee, use_height_lock=False) assert (tx3.hash in self.nodes[0].getrawmempool()) self.nodes[0].generate(1) assert (tx3.hash not in self.nodes[0].getrawmempool()) # One more test, this time using height locks tx4 = test_nonzero_locks(tx3, self.nodes[0], self.relayfee, use_height_lock=True) assert (tx4.hash in self.nodes[0].getrawmempool()) # Now try combining confirmed and unconfirmed inputs tx5 = test_nonzero_locks(tx4, self.nodes[0], self.relayfee, use_height_lock=True) assert (tx5.hash not in self.nodes[0].getrawmempool()) utxos = self.nodes[0].listunspent() tx5.vin.append( CTxIn(COutPoint(int(utxos[0]["txid"], 16), utxos[0]["vout"]), n_sequence=1)) tx5.vout[0].nValue += int(utxos[0]["amount"] * COIN) raw_tx5 = self.nodes[0].signrawtransaction(to_hex(tx5))["hex"] assert_raises_rpc_error(-26, NOT_FINAL_ERROR, self.nodes[0].sendrawtransaction, raw_tx5) # Test mempool-BIP68 consistency after reorg # # State of the transactions in the last blocks: # ... -> [ tx2 ] -> [ tx3 ] # tip-1 tip # And currently tx4 is in the mempool. # # If we invalidate the tip, tx3 should get added to the mempool, causing # tx4 to be removed (fails sequence-lock). self.nodes[0].invalidateblock(self.nodes[0].getbestblockhash()) assert (tx4.hash not in self.nodes[0].getrawmempool()) assert (tx3.hash in self.nodes[0].getrawmempool()) # Now mine 2 empty blocks to reorg out the current tip (labeled tip-1 in # diagram above). # This would cause tx2 to be added back to the mempool, which in turn causes # tx3 to be removed. tip = int( self.nodes[0].getblockhash(self.nodes[0].getblockcount() - 1), 16) height = self.nodes[0].getblockcount() for _ in range(2): block = create_block(tip, create_coinbase(height), cur_time) block.nVersion = 3 block.rehash() block.solve() tip = block.x16r height += 1 self.nodes[0].submitblock(to_hex(block)) cur_time += 1 mempool = self.nodes[0].getrawmempool() assert (tx3.hash not in mempool) assert (tx2.hash in mempool) # Reset the chain and get rid of the mocktimed-blocks self.nodes[0].setmocktime(0) self.nodes[0].invalidateblock(self.nodes[0].getblockhash(cur_height + 1)) self.nodes[0].generate(10)