def test_sendcmpct(node, test_node, preferred_version, old_node=None): # Make sure we get a SENDCMPCT message from our peer def received_sendcmpct(): return len(test_node.last_sendcmpct) > 0 wait_until(received_sendcmpct, timeout=30, lock=mininode_lock, err_msg="test_sendcmpct") with mininode_lock: # Check that the first version received is the preferred one assert_equal(test_node.last_sendcmpct[0].version, preferred_version) # And that we receive versions down to 1. assert_equal(test_node.last_sendcmpct[-1].version, 1) test_node.last_sendcmpct = [] tip = int(node.getbestblockhash(), 16) def check_announcement_of_new_block(node_data, peer, predicate): peer.clear_block_announcement() block_hash = int(node_data.generate(1)[0], 16) peer.wait_for_block_announcement(block_hash, timeout=30) assert peer.block_announced with mininode_lock: assert predicate(peer), ( "block_hash={!r}, cmpctblock={!r}, inv={!r}".format( block_hash, peer.last_message.get("cmpctblock", None), peer.last_message.get("inv", None))) # We shouldn't get any block announcements via cmpctblock yet. check_announcement_of_new_block( node, test_node, lambda p: "cmpctblock" not in p.last_message) # Try one more time, this time after requesting headers. test_node.request_headers_and_sync(locator=[tip]) check_announcement_of_new_block( node, test_node, lambda p: "cmpctblock" not in p.last_message and "inv" in p.last_message) # Test a few ways of using sendcmpct that should NOT # result in compact block announcements. # Before each test, sync the headers chain. test_node.request_headers_and_sync(locator=[tip]) # Now try a SENDCMPCT message with too-high version sendcmpct = MsgSendCmpct() sendcmpct.version = preferred_version + 1 sendcmpct.announce = True test_node.send_and_ping(sendcmpct) check_announcement_of_new_block( node, test_node, lambda p: "cmpctblock" not in p.last_message) # Headers sync before next test. test_node.request_headers_and_sync(locator=[tip]) # Now try a SENDCMPCT message with valid version, but announce=False sendcmpct.version = preferred_version sendcmpct.announce = False test_node.send_and_ping(sendcmpct) check_announcement_of_new_block( node, test_node, lambda p: "cmpctblock" not in p.last_message) # Headers sync before next test. test_node.request_headers_and_sync(locator=[tip]) # Finally, try a SENDCMPCT message with announce=True sendcmpct.version = preferred_version sendcmpct.announce = True test_node.send_and_ping(sendcmpct) check_announcement_of_new_block( node, test_node, lambda p: "cmpctblock" in p.last_message) # Try one more time (no headers sync should be needed!) check_announcement_of_new_block( node, test_node, lambda p: "cmpctblock" in p.last_message) # Try one more time, after turning on sendheaders test_node.send_and_ping(MsgSendHeaders()) check_announcement_of_new_block( node, test_node, lambda p: "cmpctblock" in p.last_message) # Try one more time, after sending a version-1, announce=false message. sendcmpct.version = preferred_version - 1 sendcmpct.announce = False test_node.send_and_ping(sendcmpct) check_announcement_of_new_block( node, test_node, lambda p: "cmpctblock" in p.last_message) # Now turn off announcements sendcmpct.version = preferred_version sendcmpct.announce = False test_node.send_and_ping(sendcmpct) check_announcement_of_new_block( node, test_node, lambda p: "cmpctblock" not in p.last_message and "headers" in p.last_message) if old_node is not None: # Verify that a peer using an older protocol version can receive # announcements from this node. sendcmpct.version = preferred_version - 1 sendcmpct.announce = True old_node.send_and_ping(sendcmpct) # Header sync old_node.request_headers_and_sync(locator=[tip]) check_announcement_of_new_block( node, old_node, lambda p: "cmpctblock" in p.last_message)
def run_test(self): # Setup the p2p connections and start up the network thread. inv_node = TestNode() test_node = TestNode() self.p2p_connections = [inv_node, test_node] connections = [ NodeConn('127.0.0.1', p2p_port(0), self.nodes[0], inv_node), NodeConn('127.0.0.1', p2p_port(0), self.nodes[0], test_node, services=0) ] # Set nServices to 0 for test_node, so no block download will occur outside of # direct fetching inv_node.add_connection(connections[0]) test_node.add_connection(connections[1]) NetworkThread().start() # Start up network handling in another thread # Test logic begins here inv_node.wait_for_verack() test_node.wait_for_verack() # Ensure verack's have been processed by our peer inv_node.sync_with_ping() test_node.sync_with_ping() tip = int(self.nodes[0].getbestblockhash(), 16) # PART 1 # 1. Mine a block; expect inv announcements each time self.log.info( "Part 1: headers don't start before sendheaders message...") block_time = 0 for i in range(4): old_tip = tip tip = self.mine_blocks(1) assert_equal(inv_node.check_last_announcement(inv=[tip]), True) assert_equal(test_node.check_last_announcement(inv=[tip]), True) # Try a few different responses; none should affect next announcement if i == 0: # first request the block test_node.get_data([tip]) test_node.wait_for_block(tip) elif i == 1: # next try requesting header and block test_node.get_headers(locator=[old_tip], hashstop=tip) test_node.get_data([tip]) test_node.wait_for_block(tip) test_node.clear_last_announcement( ) # since we requested headers... elif i == 2: # this time announce own block via headers height = self.nodes[0].getblockcount() last_time = self.nodes[0].getblock( self.nodes[0].getbestblockhash())['time'] block_time = last_time + 1 new_block = create_block(tip, create_coinbase(height + 1), block_time) new_block.solve() test_node.send_header_for_blocks([new_block]) test_node.wait_for_getdata([new_block.sha256]) test_node.send_message(MsgBlock(new_block)) test_node.sync_with_ping() # make sure this block is processed inv_node.clear_last_announcement() test_node.clear_last_announcement() self.log.info("Part 1: success!") self.log.info( "Part 2: announce blocks with headers after sendheaders message..." ) # PART 2 # 2. Send a sendheaders message and test that headers announcements # commence and keep working. test_node.send_message(MsgSendHeaders()) prev_tip = int(self.nodes[0].getbestblockhash(), 16) test_node.get_headers(locator=[prev_tip], hashstop=0) test_node.sync_with_ping() # Now that we've synced headers, headers announcements should work tip = self.mine_blocks(1) assert_equal(inv_node.check_last_announcement(inv=[tip]), True) assert_equal(test_node.check_last_announcement(headers=[tip]), True) height = self.nodes[0].getblockcount() + 1 block_time += 10 # Advance far enough ahead for i in range(10): # Mine i blocks, and alternate announcing either via # inv (of tip) or via headers. After each, new blocks # mined by the node should successfully be announced # with block header, even though the blocks are never requested for j in range(2): blocks = [] for _ in range(i + 1): blocks.append( create_block(tip, create_coinbase(height), block_time)) blocks[-1].solve() tip = blocks[-1].sha256 block_time += 1 height += 1 if j == 0: # Announce via inv test_node.send_block_inv(tip) test_node.wait_for_getheaders() # Should have received a getheaders now test_node.send_header_for_blocks(blocks) # Test that duplicate inv's won't result in duplicate # getdata requests, or duplicate headers announcements [inv_node.send_block_inv(x.sha256) for x in blocks] test_node.wait_for_getdata([x.sha256 for x in blocks]) inv_node.sync_with_ping() else: # Announce via headers test_node.send_header_for_blocks(blocks) test_node.wait_for_getdata([x.sha256 for x in blocks]) # Test that duplicate headers won't result in duplicate # getdata requests (the check is further down) inv_node.send_header_for_blocks(blocks) inv_node.sync_with_ping() [test_node.send_message(MsgBlock(x)) for x in blocks] test_node.sync_with_ping() inv_node.sync_with_ping() # This block should not be announced to the inv node (since it also # broadcast it) assert "inv" not in inv_node.last_message assert "headers" not in inv_node.last_message tip = self.mine_blocks(1) assert_equal(inv_node.check_last_announcement(inv=[tip]), True) assert_equal(test_node.check_last_announcement(headers=[tip]), True) height += 1 block_time += 1 self.log.info("Part 2: success!") self.log.info( "Part 3: headers announcements can stop after large reorg, and resume after headers/inv from peer..." ) # PART 3. Headers announcements can stop after large reorg, and resume after # getheaders or inv from peer. for j in range(2): # First try mining a reorg that can propagate with header announcement new_block_hashes = self.mine_reorg(length=7) tip = new_block_hashes[-1] assert_equal(inv_node.check_last_announcement(inv=[tip]), True) assert_equal( test_node.check_last_announcement(headers=new_block_hashes), True) block_time += 8 # Mine a too-large reorg, which should be announced with a single inv new_block_hashes = self.mine_reorg(length=8) tip = new_block_hashes[-1] assert_equal(inv_node.check_last_announcement(inv=[tip]), True) assert_equal(test_node.check_last_announcement(inv=[tip]), True) block_time += 9 fork_point = self.nodes[0].getblock( "%02x" % new_block_hashes[0])["previousblockhash"] fork_point = int(fork_point, 16) # Use getblocks/getdata test_node.send_getblocks(locator=[fork_point]) assert_equal( test_node.check_last_announcement(inv=new_block_hashes), True) test_node.get_data(new_block_hashes) test_node.wait_for_block(new_block_hashes[-1]) for i in range(3): # Mine another block, still should get only an inv tip = self.mine_blocks(1) assert_equal(inv_node.check_last_announcement(inv=[tip]), True) assert_equal(test_node.check_last_announcement(inv=[tip]), True) if i == 0: # Just get the data -- shouldn't cause headers announcements to resume test_node.get_data([tip]) test_node.wait_for_block(tip) elif i == 1: # Send a getheaders message that shouldn't trigger headers announcements # to resume (best header sent will be too old) test_node.get_headers(locator=[fork_point], hashstop=new_block_hashes[1]) test_node.get_data([tip]) test_node.wait_for_block(tip) elif i == 2: test_node.get_data([tip]) test_node.wait_for_block(tip) # This time, try sending either a getheaders to trigger resumption # of headers announcements, or mine a new block and inv it, also # triggering resumption of headers announcements. if j == 0: test_node.get_headers(locator=[tip], hashstop=0) test_node.sync_with_ping() else: test_node.send_block_inv(tip) test_node.sync_with_ping() # New blocks should now be announced with header tip = self.mine_blocks(1) assert_equal(inv_node.check_last_announcement(inv=[tip]), True) assert_equal(test_node.check_last_announcement(headers=[tip]), True) self.log.info("Part 3: success!") self.log.info("Part 4: Testing direct fetch behavior...") tip = self.mine_blocks(1) height = self.nodes[0].getblockcount() + 1 last_time = self.nodes[0].getblock( self.nodes[0].getbestblockhash())['time'] block_time = last_time + 1 # Create 2 blocks. Send the blocks, then send the headers. blocks = [] for _ in range(2): blocks.append( create_block(tip, create_coinbase(height), block_time)) blocks[-1].solve() tip = blocks[-1].sha256 block_time += 1 height += 1 inv_node.send_message(MsgBlock(blocks[-1])) inv_node.sync_with_ping() # Make sure blocks are processed test_node.last_message.pop("getdata", None) test_node.send_header_for_blocks(blocks) test_node.sync_with_ping() # should not have received any getdata messages with mininode_lock: assert "getdata" not in test_node.last_message # This time, direct fetch should work blocks = [] for _ in range(3): blocks.append( create_block(tip, create_coinbase(height), block_time)) blocks[-1].solve() tip = blocks[-1].sha256 block_time += 1 height += 1 test_node.send_header_for_blocks(blocks) test_node.sync_with_ping() test_node.wait_for_getdata([x.sha256 for x in blocks], timeout=int(direct_fetch_response_time)) [test_node.send_message(MsgBlock(x)) for x in blocks] test_node.sync_with_ping() # Now announce a header that forks the last two blocks tip = blocks[0].sha256 height -= 1 blocks = [] # Create extra blocks for later for _ in range(20): blocks.append( create_block(tip, create_coinbase(height), block_time)) blocks[-1].solve() tip = blocks[-1].sha256 block_time += 1 height += 1 # Announcing one block on fork should not trigger direct fetch # (less work than tip) test_node.last_message.pop("getdata", None) test_node.send_header_for_blocks(blocks[0:1]) test_node.sync_with_ping() with mininode_lock: assert "getdata" not in test_node.last_message # Announcing one more block on fork should trigger direct fetch for # both blocks (same work as tip) test_node.send_header_for_blocks(blocks[1:2]) test_node.sync_with_ping() test_node.wait_for_getdata([x.sha256 for x in blocks[0:2]], timeout=int(direct_fetch_response_time)) # Announcing 16 more headers should trigger direct fetch for 14 more # blocks test_node.send_header_for_blocks(blocks[2:18]) test_node.sync_with_ping() test_node.wait_for_getdata([x.sha256 for x in blocks[2:16]], timeout=int(direct_fetch_response_time)) # Announcing 1 more header should not trigger any response test_node.last_message.pop("getdata", None) test_node.send_header_for_blocks(blocks[18:19]) test_node.sync_with_ping() with mininode_lock: assert "getdata" not in test_node.last_message self.log.info("Part 4: success!") # Now deliver all those blocks we announced. [test_node.send_message(MsgBlock(x)) for x in blocks] self.log.info("Part 5: Testing handling of unconnecting headers") # First we test that receipt of an unconnecting header doesn't prevent # chain sync. for i in range(10): test_node.last_message.pop("getdata", None) blocks = [] # Create two more blocks. for j in range(2): blocks.append( create_block(tip, create_coinbase(height), block_time)) blocks[-1].solve() tip = blocks[-1].sha256 block_time += 1 height += 1 # Send the header of the second block -> this won't connect. with mininode_lock: test_node.last_message.pop("getheaders", None) test_node.send_header_for_blocks([blocks[1]]) test_node.wait_for_getheaders() test_node.send_header_for_blocks(blocks) test_node.wait_for_getdata([x.sha256 for x in blocks]) [test_node.send_message(MsgBlock(x)) for x in blocks] test_node.sync_with_ping() assert_equal(int(self.nodes[0].getbestblockhash(), 16), blocks[1].sha256) blocks = [] # Now we test that if we repeatedly don't send connecting headers, we # don't go into an infinite loop trying to get them to connect. MAX_UNCONNECTING_HEADERS = 10 for j in range(MAX_UNCONNECTING_HEADERS + 1): blocks.append( create_block(tip, create_coinbase(height), block_time)) blocks[-1].solve() tip = blocks[-1].sha256 block_time += 1 height += 1 for i in range(1, MAX_UNCONNECTING_HEADERS): # Send a header that doesn't connect, check that we get a getheaders. with mininode_lock: test_node.last_message.pop("getheaders", None) test_node.send_header_for_blocks([blocks[i]]) test_node.wait_for_getheaders() # Next header will connect, should re-set our count: test_node.send_header_for_blocks([blocks[0]]) # Remove the first two entries (blocks[1] would connect): blocks = blocks[2:] # Now try to see how many unconnecting headers we can send # before we get disconnected. Should be 5*MAX_UNCONNECTING_HEADERS for i in range(5 * MAX_UNCONNECTING_HEADERS - 1): # Send a header that doesn't connect, check that we get a getheaders. with mininode_lock: test_node.last_message.pop("getheaders", None) test_node.send_header_for_blocks([blocks[i % len(blocks)]]) test_node.wait_for_getheaders() # Eventually this stops working. test_node.send_header_for_blocks([blocks[-1]]) # Should get disconnected test_node.wait_for_disconnect() self.log.info("Part 5: success!") # Finally, check that the inv node never received a getdata request, # throughout the test assert "getdata" not in inv_node.last_message