def run_test(self):
        block_count = 0

        # Create a P2P connections
        node0 = NodeConnCB()
        connection = NodeConn('127.0.0.1', p2p_port(0), self.nodes[0], node0)
        node0.add_connection(connection)

        node1 = NodeConnCB()
        connection = NodeConn('127.0.0.1', p2p_port(0), self.nodes[0], node1)
        node1.add_connection(connection)

        NetworkThread().start()
        # wait_for_verack ensures that the P2P connection is fully up.
        node0.wait_for_verack()
        node1.wait_for_verack()

        # send one to get out of IBD state
        self.chain.set_genesis_hash(int(self.nodes[0].getbestblockhash(), 16))
        block = self.chain.next_block(block_count)
        block_count += 1
        node0.send_message(msg_block(block))

        self.nodes[0].waitforblockheight(1)

        block = self.chain.next_block(block_count)

        # set block validating status to wait after validation
        self.nodes[0].waitaftervalidatingblock(block.hash, "add")

        # make sure block hashes are in waiting list
        wait_for_waiting_blocks({block.hash}, self.nodes[0], self.log)

        node0.send_message(msg_block(block))
        node1.send_message(msg_block(block))

        # make sure we started validating blocks.
        # One is validating the other is ignored.
        wait_for_validating_blocks({block.hash}, self.nodes[0], self.log)

        def wait_for_log():
            line_text = block.hash + " will not be considered by the current"
            for line in open(glob.glob(self.options.tmpdir + "/node0" + "/regtest/bitcoind.log")[0]):
                if line_text in line:
                    self.log.info("Found line: %s", line)
                    return True
            return False

        # wait for the log of the ignored block.
        wait_until(wait_for_log)

        # remove block validating status to finish validation
        self.nodes[0].waitaftervalidatingblock(block.hash, "remove")

        # wait till validation of block finishes
        node0.sync_with_ping()

        self.nodes[0].waitforblockheight(2)
        assert_equal(block.hash, self.nodes[0].getbestblockhash())
    def run_test(self):
        block_count = 0

        # Create a P2P connections
        node0 = NodeConnCB()
        connection = NodeConn('127.0.0.1', p2p_port(0), self.nodes[0], node0)
        node0.add_connection(connection)

        NetworkThread().start()
        # wait_for_verack ensures that the P2P connection is fully up.
        node0.wait_for_verack()

        self.chain.set_genesis_hash(int(self.nodes[0].getbestblockhash(), 16))

        _, out, block_count = prepare_init_chain(self.chain,
                                                 101,
                                                 100,
                                                 start_block=0,
                                                 block_0=False,
                                                 node=node0)

        self.log.info("waiting for block height 101 via rpc")
        self.nodes[0].waitforblockheight(101)

        # wait till validation of block or blocks finishes
        node0.sync_with_ping()

        block1 = self.chain.next_block(block_count, spend=out[0], extra_txns=8)
        block_count += 1
        # send block but block him at validation point
        self.nodes[0].waitaftervalidatingblock(block1.hash, "add")
        node0.send_message(msg_block(block1))
        self.log.info(f"block1 hash: {block1.hash}")

        # make sure block hash is in waiting list
        wait_for_waiting_blocks({block1.hash}, self.nodes[0], self.log)

        # send child block
        block2 = self.chain.next_block(block_count,
                                       spend=out[1],
                                       extra_txns=10)
        block_count += 1
        node0.send_message(msg_block(block2))
        self.log.info(f"block2 hash: {block2.hash}")

        wait_until(lambda: check_for_log_msg(
            self, block2.hash + " will not be considered by the current",
            "/node0"))

        self.nodes[0].waitaftervalidatingblock(block1.hash, "remove")

        # wait till validation of block or blocks finishes
        node0.sync_with_ping()

        # block that arrived last on competing chain should be active
        assert_equal(block2.hash, self.nodes[0].getbestblockhash())
    def run_test(self):
        block_count = 0

        # Create a P2P connections
        node0 = NodeConnCB()
        connection = NodeConn('127.0.0.1', p2p_port(0), self.nodes[0], node0)
        node0.add_connection(connection)

        NetworkThread().start()
        # wait_for_verack ensures that the P2P connection is fully up.
        node0.wait_for_verack()

        # send one to get out of IBD state
        self.chain.set_genesis_hash(int(self.nodes[0].getbestblockhash(), 16))

        ancestor_block_hash = self.nodes[0].getbestblockhash()

        parent_block = self.chain.next_block(block_count)
        block_count += 1

        headers_message = msg_headers()
        headers_message.headers = [CBlockHeader(parent_block)]
        connection.cb.send_message(headers_message)

        child_block = self.chain.next_block(block_count)
        node0.send_message(msg_block(child_block))

        # wait till validation of block finishes
        node0.sync_with_ping()

        assert_equal(ancestor_block_hash, self.nodes[0].getbestblockhash())

        self.stop_node(0)
        self.start_node(0)

        # Create a P2P connections
        node0 = NodeConnCB()
        connection = NodeConn('127.0.0.1', p2p_port(0), self.nodes[0], node0)
        node0.add_connection(connection)

        NetworkThread().start()
        # wait_for_verack ensures that the P2P connection is fully up.
        node0.wait_for_verack()

        assert_equal(ancestor_block_hash, self.nodes[0].getbestblockhash())

        node0.send_message(msg_block(parent_block))

        # wait till validation of block finishes
        node0.sync_with_ping()

        assert_equal(child_block.hash, self.nodes[0].getbestblockhash())
Example #4
0
    def run_test(self):
        block_count = 0

        # Create a P2P connections
        node0 = NodeConnCB()
        connection = NodeConn('127.0.0.1', p2p_port(0), self.nodes[0], node0)
        node0.add_connection(connection)

        node1 = NodeConnCB()
        connection = NodeConn('127.0.0.1', p2p_port(0), self.nodes[0], node1)
        node1.add_connection(connection)

        NetworkThread().start()
        # wait_for_verack ensures that the P2P connection is fully up.
        node0.wait_for_verack()
        node1.wait_for_verack()

        # send one to get out of IBD state
        self.chain.set_genesis_hash(int(self.nodes[0].getbestblockhash(), 16))
        block = self.chain.next_block(block_count)
        block_count += 1
        node0.send_message(msg_block(block))

        self.nodes[0].waitforblockheight(1)

        block = self.chain.next_block(block_count)

        # set block validating status to wait after validation
        self.nodes[0].waitaftervalidatingblock(block.hash, "add")

        # make sure block hashes are in waiting list
        wait_for_waiting_blocks({block.hash}, self.nodes[0], self.log)

        node0.send_message(msg_block(block))
        node1.send_message(msg_block(block))

        # make sure we started validating blocks.
        # One is validating the other is ignored.
        wait_for_validating_blocks({block.hash}, self.nodes[0], self.log)

        # wait for the log of the ignored block.
        wait_until(lambda: check_for_log_msg(self, block.hash + " will not be considered by the current", "/node0"))

        # remove block validating status to finish validation
        self.nodes[0].waitaftervalidatingblock(block.hash, "remove")

        # wait till validation of block finishes
        node0.sync_with_ping()

        self.nodes[0].waitforblockheight(2)
        assert_equal(block.hash, self.nodes[0].getbestblockhash())
    def run_test(self):
        block_count = 0

        # Create a P2P connections
        node0 = NodeConnCB()
        connection = NodeConn('127.0.0.1', p2p_port(0), self.nodes[0], node0)
        node0.add_connection(connection)

        NetworkThread().start()
        node0.wait_for_verack()

        self.chain.set_genesis_hash(int(self.nodes[0].getbestblockhash(), 16))
        block = self.chain.next_block(block_count)
        block_count += 1
        node0.send_message(msg_block(block))

        block = self.chain.next_block(block_count)
        self.log.info(f"block hash: {block.hash}")
        self.nodes[0].waitaftervalidatingblock(block.hash, "add")

        # make sure block hash is in waiting list
        wait_for_waiting_blocks({block.hash}, self.nodes[0], self.log)

        self.log.info("sending block")
        node0.send_message(msg_block(block))

        # make sure we started validating block
        wait_for_validating_blocks({block.hash}, self.nodes[0], self.log)

        # sleep a bit and check that in the meantime validation hasn't proceeded
        time.sleep(1)
        assert (block.hash != self.nodes[0].getbestblockhash())

        # after validating the block we release its waiting status
        self.nodes[0].waitaftervalidatingblock(block.hash, "remove")

        # wait till validation of block or blocks finishes
        node0.sync_with_ping()

        assert_equal(block.hash, self.nodes[0].getbestblockhash())
Example #6
0
    def run_test(self):
        block_count = 0

        # Create a P2P connections
        node0 = NodeConnCB()
        connection = NodeConn('127.0.0.1', p2p_port(0), self.nodes[0], node0)
        node0.add_connection(connection)

        node1 = NodeConnCB()
        connection = NodeConn('127.0.0.1', p2p_port(0), self.nodes[0], node1)
        node1.add_connection(connection)

        node2 = NodeConnCB()
        connection = NodeConn('127.0.0.1', p2p_port(0), self.nodes[0], node2)
        node2.add_connection(connection)

        NetworkThread().start()
        # wait_for_verack ensures that the P2P connection is fully up.
        node0.wait_for_verack()
        node1.wait_for_verack()
        node2.wait_for_verack()

        self.chain.set_genesis_hash(int(self.nodes[0].getbestblockhash(), 16))
        block = self.chain.next_block(block_count)
        block_count += 1
        self.chain.save_spendable_output()
        node0.send_message(msg_block(block))

        for i in range(100):
            block = self.chain.next_block(block_count)
            block_count += 1
            self.chain.save_spendable_output()
            node0.send_message(msg_block(block))

        out = []
        for i in range(100):
            out.append(self.chain.get_spendable_output())

        self.log.info("waiting for block height 101 via rpc")
        self.nodes[0].waitforblockheight(101)

        tip_block_num = block_count-1

        # left branch
        block2 = self.chain.next_block(block_count, spend=out[0], extra_txns=8)
        block2_num = block_count
        block_count += 1
        node0.send_message(msg_block(block2))
        self.log.info(f"block2 hash: {block2.hash}")

        self.nodes[0].waitforblockheight(102)

        # send blocks 3,4 for parallel validation on left branch
        block3 = self.chain.next_block(block_count, spend=out[1], extra_txns=10)
        block_count += 1

        self.chain.set_tip(block2_num)

        block4 = self.chain.next_block(block_count, spend=out[1], extra_txns=8)
        block_count += 1

        # send two "hard" blocks, with waitaftervalidatingblock we artificially
        # extend validation time.
        self.log.info(f"block3 hash: {block3.hash}")
        self.nodes[0].waitaftervalidatingblock(block3.hash, "add")
        self.log.info(f"block4 hash: {block4.hash}")
        self.nodes[0].waitaftervalidatingblock(block4.hash, "add")
        # make sure block hashes are in waiting list
        wait_for_waiting_blocks({block3.hash, block4.hash}, self.nodes[0], self.log)

        node0.send_message(msg_block(block3))
        node2.send_message(msg_block(block4))

        # make sure we started validating blocks
        wait_for_validating_blocks({block3.hash, block4.hash}, self.nodes[0], self.log)

        # right branch
        self.chain.set_tip(tip_block_num)
        block5 = self.chain.next_block(block_count, spend=out[0], extra_txns=10)
        block_count += 1
        node1.send_message(msg_block(block5))
        self.log.info(f"block5 hash: {block5.hash}")

        # and two blocks to extend second branch to cause reorg
        # - they must be sent from the same node as otherwise they will be
        #   rejected with "prev block not found"
        block6 = self.chain.next_block(block_count)
        node1.send_message(msg_block(block6))
        self.log.info(f"block6 hash: {block6.hash}")
        block_count += 1

        block7 = self.chain.next_block(block_count)
        node1.send_message(msg_block(block7))
        self.log.info(f"block7 hash: {block7.hash}")
        block_count += 1

        self.nodes[0].waitforblockheight(104)
        assert_equal(block7.hash, self.nodes[0].getbestblockhash())

        self.log.info("releasing wait status on parallel blocks to finish their validation")
        self.nodes[0].waitaftervalidatingblock(block3.hash, "remove")
        self.nodes[0].waitaftervalidatingblock(block4.hash, "remove")

        # wait till validation of block or blocks finishes
        node0.sync_with_ping()

        # block that arrived last on competing chain should be active
        assert_equal(block7.hash, self.nodes[0].getbestblockhash())
Example #7
0
    def run_test(self):
        # Setup the p2p connections and start up the network thread.
        test_node = NodeConnCB()  # connects to node0 (not whitelisted)
        white_node = NodeConnCB()  # connects to node1 (whitelisted)
        min_work_node = NodeConnCB()  # connects to node2 (not whitelisted)

        connections = [
            NodeConn('127.0.0.1', p2p_port(0), self.nodes[0], test_node),
            NodeConn('127.0.0.1', p2p_port(1), self.nodes[1], white_node),
            NodeConn('127.0.0.1', p2p_port(2), self.nodes[2], min_work_node)
        ]
        test_node.add_connection(connections[0])
        white_node.add_connection(connections[1])
        min_work_node.add_connection(connections[2])

        NetworkThread().start()  # Start up network handling in another thread

        # Test logic begins here
        test_node.wait_for_verack()
        white_node.wait_for_verack()
        min_work_node.wait_for_verack()

        # 1. Have nodes mine a block (nodes1/2 leave IBD)
        [n.generate(1) for n in self.nodes]
        tips = [int("0x" + n.getbestblockhash(), 0) for n in self.nodes]

        # 2. Send one block that builds on each tip.
        # This should be accepted by nodes 1/2
        blocks_h2 = []  # the height 2 blocks on each node's chain
        block_time = int(time.time()) + 1
        for i in range(3):
            blocks_h2.append(
                create_block(tips[i], create_coinbase(2), block_time))
            blocks_h2[i].solve()
            block_time += 1
        test_node.send_message(MsgBlock(blocks_h2[0]))
        white_node.send_message(MsgBlock(blocks_h2[1]))
        min_work_node.send_message(MsgBlock(blocks_h2[2]))

        for x in [test_node, white_node, min_work_node]:
            x.sync_with_ping()
        assert_equal(self.nodes[0].getblockcount(), 2)
        assert_equal(self.nodes[1].getblockcount(), 2)
        assert_equal(self.nodes[2].getblockcount(), 1)
        self.log.info(
            "First height 2 block accepted by node0/node1; correctly rejected by node2"
        )

        # 3. Send another block that builds on the original tip.
        blocks_h2f = []  # Blocks at height 2 that fork off the main chain
        for i in range(2):
            blocks_h2f.append(
                create_block(tips[i], create_coinbase(2),
                             blocks_h2[i].nTime + 1))
            blocks_h2f[i].solve()
        test_node.send_message(MsgBlock(blocks_h2f[0]))
        white_node.send_message(MsgBlock(blocks_h2f[1]))

        for x in [test_node, white_node]:
            x.sync_with_ping()
        for x in self.nodes[0].getchaintips():
            if x['hash'] == blocks_h2f[0].hash:
                assert_equal(x['status'], "headers-only")

        for x in self.nodes[1].getchaintips():
            if x['hash'] == blocks_h2f[1].hash:
                assert_equal(x['status'], "valid-headers")

        self.log.info(
            "Second height 2 block accepted only from whitelisted peer")

        # 4. Now send another block that builds on the forking chain.
        blocks_h3 = []
        for i in range(2):
            blocks_h3.append(
                create_block(blocks_h2f[i].sha256, create_coinbase(3),
                             blocks_h2f[i].nTime + 1))
            blocks_h3[i].solve()
        test_node.send_message(MsgBlock(blocks_h3[0]))
        white_node.send_message(MsgBlock(blocks_h3[1]))

        for x in [test_node, white_node]:
            x.sync_with_ping()
        # Since the earlier block was not processed by node0, the new block
        # can't be fully validated.
        for x in self.nodes[0].getchaintips():
            if x['hash'] == blocks_h3[0].hash:
                assert_equal(x['status'], "headers-only")

        # But this block should be accepted by node0 since it has more work.
        self.nodes[0].getblock(blocks_h3[0].hash)
        self.log.info(
            "Unrequested more-work block accepted from non-whitelisted peer")

        # Node1 should have accepted and reorged.
        assert_equal(self.nodes[1].getblockcount(), 3)
        self.log.info(
            "Successfully reorged to length 3 chain from whitelisted peer")

        # 4b. Now mine 288 more blocks and deliver; all should be processed but
        # the last (height-too-high) on node0.  Node1 should process the tip if
        # we give it the headers chain leading to the tip.
        tips = blocks_h3
        headers_message = MsgHeaders()
        all_blocks = []  # node0's blocks
        for j in range(2):
            for i in range(288):
                next_block = create_block(tips[j].sha256,
                                          create_coinbase(i + 4),
                                          tips[j].nTime + 1)
                next_block.solve()
                if j == 0:
                    test_node.send_message(MsgBlock(next_block))
                    all_blocks.append(next_block)
                else:
                    headers_message.headers.append(CBlockHeader(next_block))
                tips[j] = next_block

        time.sleep(2)
        # Blocks 1-287 should be accepted, block 288 should be ignored because it's too far ahead
        for x in all_blocks[:-1]:
            self.nodes[0].getblock(x.hash)
        assert_raises_rpc_error(-1, "Block not found on disk",
                                self.nodes[0].getblock, all_blocks[-1].hash)

        headers_message.headers.pop()  # Ensure the last block is unrequested
        white_node.send_message(headers_message)  # Send headers leading to tip
        white_node.send_message(MsgBlock(tips[1]))  # Now deliver the tip
        white_node.sync_with_ping()
        self.nodes[1].getblock(tips[1].hash)
        self.log.info(
            "Unrequested block far ahead of tip accepted from whitelisted peer"
        )

        # 5. Test handling of unrequested block on the node that didn't process
        # Should still not be processed (even though it has a child that has more
        # work).
        test_node.send_message(MsgBlock(blocks_h2f[0]))

        # Here, if the sleep is too short, the test could falsely succeed (if the
        # node hasn't processed the block by the time the sleep returns, and then
        # the node processes it and incorrectly advances the tip).
        # But this would be caught later on, when we verify that an inv triggers
        # a getdata request for this block.
        test_node.sync_with_ping()
        assert_equal(self.nodes[0].getblockcount(), 2)
        self.log.info(
            "Unrequested block that would complete more-work chain was ignored"
        )

        # 6. Try to get node to request the missing block.
        # Poke the node with an inv for block at height 3 and see if that
        # triggers a getdata on block 2 (it should if block 2 is missing).
        with mininode_lock:
            # Clear state so we can check the getdata request
            test_node.last_message.pop("getdata", None)
            test_node.send_message(MsgInv([CInv(2, blocks_h3[0].sha256)]))

        test_node.sync_with_ping()
        with mininode_lock:
            getdata = test_node.last_message["getdata"]

        # Check that the getdata includes the right block
        assert_equal(getdata.inv[0].hash, blocks_h2f[0].sha256)
        self.log.info("Inv at tip triggered getdata for unprocessed block")

        # 7. Send the missing block for the third time (now it is requested)
        test_node.send_message(MsgBlock(blocks_h2f[0]))

        test_node.sync_with_ping()
        assert_equal(self.nodes[0].getblockcount(), 290)
        self.log.info(
            "Successfully reorged to longer chain from non-whitelisted peer")

        # 8. Connect node2 to node0 and ensure it is able to sync
        connect_nodes(self.nodes[0], 2)
        sync_blocks([self.nodes[0], self.nodes[2]])
        self.log.info("Successfully synced nodes 2 and 0")

        [c.disconnect_node() for c in connections]
Example #8
0
    def run_test(self):
        test_node = NodeConnCB()
        connections = []
        connections.append(
            NodeConn('127.0.0.1', p2p_port(0), self.nodes[0], test_node))
        test_node.add_connection(connections[0])
        NetworkThread().start()

        starting_height = 3
        self.nodes[0].generate(starting_height)

        # Create block with P2SH output and send it to node.
        # It should be validated and accepted.
        block = self.make_block_withP2SH_coinbase()
        test_node.send_message(msg_block(block))
        test_node.sync_with_ping()
        # check if block was accepted
        assert_equal(self.nodes[0].getbestblockhash(), block.hash)

        # submitblock with P2SH in coinbase tx (not included in blockchain)
        block = self.make_block_withP2SH_coinbase()
        block.solve()
        assert_raises_rpc_error(-26, "bad-txns-vout-p2sh",
                                self.nodes[0].submitblock, ToHex(block))

        # verifyblockcandidate with P2SH in coinbase tx (not included in blockchain)
        assert_raises_rpc_error(-26, "bad-txns-vout-p2sh",
                                self.nodes[0].verifyblockcandidate,
                                ToHex(block))

        # submitblock without P2SH in coinbase tx (included in blockchain)
        hashPrev = int(self.nodes[0].getbestblockhash(), 16)
        ctx = create_coinbase(self.nodes[0].getblockcount() + 1)
        block2 = create_block(hashPrev, ctx)
        block2.solve()
        self.nodes[0].submitblock(ToHex(block2))
        assert_equal(block2.hash, self.nodes[0].getbestblockhash())

        # submit block with: submitminingsolution
        # Add P2SH to coinbase output - should be rejected
        candidate = self.nodes[0].getminingcandidate(False)
        block, ctx = create_block_from_candidate(candidate, False)
        coinbase_tx = create_coinbase_P2SH(self.nodes[0].getblockcount() + 1,
                                           example_script_hash)

        # submitminingsolution with P2SH in coinbase tx - should be denied.
        assert_raises_rpc_error(
            -26, "bad-txns-vout-p2sh", self.nodes[0].submitminingsolution, {
                'id': candidate['id'],
                'nonce': block.nNonce,
                'coinbase': '{}'.format(ToHex(coinbase_tx))
            })
        # submitminingsolution without P2SH in coinbase - should be accepted
        candidate = self.nodes[0].getminingcandidate(False)
        block, ctx = create_block_from_candidate(candidate, False)
        result = self.nodes[0].submitminingsolution({
            'id':
            candidate['id'],
            'nonce':
            block.nNonce,
            'coinbase':
            '{}'.format(ToHex(ctx))
        })
        assert_equal(result, True)
        assert_equal(block.hash, self.nodes[0].getbestblockhash())

        # generatetoaddress with nonP2SH address
        height_before = self.nodes[0].getblockcount()
        address = self.nodes[0].getnewaddress()
        self.nodes[0].generatetoaddress(1, address)
        height_after = self.nodes[0].getblockcount()
        assert_equal(height_before + 1, height_after)

        # generatetoaddress with P2SH address (example for regtest: 2MzQwSSnBHWHqSAqtTVQ6v47XtaisrJa1Vc)
        assert_raises_rpc_error(-26, "bad-txns-vout-p2sh",
                                self.nodes[0].generatetoaddress, 1,
                                '2MzQwSSnBHWHqSAqtTVQ6v47XtaisrJa1Vc')
Example #9
0
    def run_test(self):
        block_count = 0

        # Create a P2P connection
        node0 = NodeConnCB()
        connection = NodeConn('127.0.0.1', p2p_port(0), self.nodes[0], node0)
        node0.add_connection(connection)

        node1 = NodeConnCB()
        connection = NodeConn('127.0.0.1', p2p_port(0), self.nodes[0], node1)
        node1.add_connection(connection)

        node2 = NodeConnCB()
        connection = NodeConn('127.0.0.1', p2p_port(0), self.nodes[0], node2)
        node2.add_connection(connection)

        NetworkThread().start()
        # wait_for_verack ensures that the P2P connection is fully up.
        node0.wait_for_verack()
        node1.wait_for_verack()
        node2.wait_for_verack()

        self.chain.set_genesis_hash(int(self.nodes[0].getbestblockhash(), 16))
        block = self.chain.next_block(block_count)
        block_count += 1
        self.chain.save_spendable_output()
        node0.send_message(msg_block(block))

        for i in range(100):
            block = self.chain.next_block(block_count)
            block_count += 1
            self.chain.save_spendable_output()
            node0.send_message(msg_block(block))

        out = []
        for i in range(100):
            out.append(self.chain.get_spendable_output())

        self.log.info("waiting for block height 101 via rpc")
        self.nodes[0].waitforblockheight(101)

        tip_block_num = block_count-1

        block2_hard = self.chain.next_block(block_count, spend=out[0], extra_txns=8)
        block_count += 1

        self.chain.set_tip(tip_block_num)

        block3_easier = self.chain.next_block(block_count, spend=out[0], extra_txns=2)
        easier_block_num = block_count
        block_count += 1

        self.chain.set_tip(tip_block_num)

        block4_hard = self.chain.next_block(block_count, spend=out[0], extra_txns=10)
        block_count += 1

        # make child block of easier block
        self.chain.set_tip(easier_block_num)
        block5 = self.chain.next_block(block_count)
        block5_num = block_count
        block_count += 1

        # send two "hard" blocks, with waitaftervalidatingblock we artificially
        # extend validation time.
        self.log.info(f"hard block2 hash: {block2_hard.hash}")
        self.nodes[0].waitaftervalidatingblock(block2_hard.hash, "add")
        self.log.info(f"hard block4 hash: {block4_hard.hash}")
        self.nodes[0].waitaftervalidatingblock(block4_hard.hash, "add")

        # make sure block hashes are in waiting list
        wait_for_waiting_blocks({block2_hard.hash, block4_hard.hash}, self.nodes[0], self.log)

        # send blocks via different p2p connection
        node0.send_message(msg_block(block2_hard))
        node1.send_message(msg_block(block4_hard))

        # make sure we started validating blocks
        wait_for_validating_blocks({block2_hard.hash, block4_hard.hash}, self.nodes[0], self.log)

        # send easier block through different p2p connection too
        node2.send_message(msg_block(block3_easier))
        self.log.info(f"easier block hash: {block3_easier.hash}")
        self.nodes[0].waitforblockheight(102)
        assert_equal(block3_easier.hash, self.nodes[0].getbestblockhash())

        # child block of block3_easier
        self.log.info(f"child block hash: {block5.hash}")
        self.nodes[0].waitaftervalidatingblock(block5.hash, "add")

        # make sure child block is in waiting list and then send it
        wait_for_not_validating_blocks({block5.hash}, self.nodes[0], self.log)
        node2.send_message(msg_block(block5))

        # make sure we started validating child block
        wait_for_validating_blocks({block5.hash}, self.nodes[0], self.log)

        # finish validation on block2_hard
        self.nodes[0].waitaftervalidatingblock(block2_hard.hash, "remove")
        wait_for_not_validating_blocks({block2_hard.hash}, self.nodes[0], self.log)

        # finish validation on child block
        self.nodes[0].waitaftervalidatingblock(block5.hash, "remove")
        wait_for_not_validating_blocks({block5.hash}, self.nodes[0], self.log)

        # block5 should be active at this point
        assert_equal(block5.hash, self.nodes[0].getbestblockhash())

        # finish validation on block4_hard
        self.nodes[0].waitaftervalidatingblock(block4_hard.hash, "remove")
        wait_for_not_validating_blocks({block4_hard.hash}, self.nodes[0], self.log)

        # block5 should still be active at this point
        assert_equal(block5.hash, self.nodes[0].getbestblockhash())

        # Make three siblings and send them via same p2p connection.
        block6_hard = self.chain.next_block(block_count, spend=out[1], extra_txns=8)
        block_count += 1

        self.chain.set_tip(block5_num)

        block7_easier = self.chain.next_block(block_count, spend=out[1], extra_txns=2)
        block_count += 1

        self.chain.set_tip(block5_num)

        block8_hard = self.chain.next_block(block_count, spend=out[1], extra_txns=10)
        block_count += 1

        self.log.info(f"hard block6 hash: {block6_hard.hash}")
        self.nodes[0].waitaftervalidatingblock(block6_hard.hash, "add")
        self.log.info(f"hard block8 hash: {block8_hard.hash}")
        self.nodes[0].waitaftervalidatingblock(block8_hard.hash, "add")
        # make sure block hashes are in waiting list
        wait_for_waiting_blocks({block6_hard.hash, block8_hard.hash}, self.nodes[0], self.log)

        # sending blocks via same p2p connection
        node0.send_message(msg_block(block6_hard))
        node0.send_message(msg_block(block8_hard))

        # make sure we started validating blocks
        wait_for_validating_blocks({block6_hard.hash, block8_hard.hash}, self.nodes[0], self.log)

        # send easier block through same p2p connection too
        node0.send_message(msg_block(block7_easier))

        self.nodes[0].waitforblockheight(104)
        assert_equal(block7_easier.hash, self.nodes[0].getbestblockhash())

        # now we can remove waiting status from blocks and finish their validation
        self.nodes[0].waitaftervalidatingblock(block6_hard.hash, "remove")
        self.nodes[0].waitaftervalidatingblock(block8_hard.hash, "remove")

        # wait till validation of block or blocks finishes
        node0.sync_with_ping()

        # easier block should still be on tip
        assert_equal(block7_easier.hash, self.nodes[0].getbestblockhash())
Example #10
0
    def run_test(self):
        block_count = 0

        # Create a P2P connections
        node0 = NodeConnCB()
        connection = NodeConn('127.0.0.1', p2p_port(0), self.nodes[0], node0)
        node0.add_connection(connection)

        NetworkThread().start()
        # wait_for_verack ensures that the P2P connection is fully up.
        node0.wait_for_verack()

        self.chain.set_genesis_hash(int(self.nodes[0].getbestblockhash(), 16))
        block = self.chain.next_block(block_count)
        block_count += 1
        self.chain.save_spendable_output()
        node0.send_message(msg_block(block))

        for i in range(100):
            block = self.chain.next_block(block_count)
            block_count += 1
            self.chain.save_spendable_output()
            node0.send_message(msg_block(block))

        out = []
        for i in range(100):
            out.append(self.chain.get_spendable_output())

        self.log.info("waiting for block height 101 via rpc")
        self.nodes[0].waitforblockheight(101)

        # wait till validation of block or blocks finishes
        node0.sync_with_ping()

        block1 = self.chain.next_block(block_count, spend=out[0], extra_txns=8)
        block_count += 1
        # send block but block him at validation point
        self.nodes[0].waitaftervalidatingblock(block1.hash, "add")
        node0.send_message(msg_block(block1))
        self.log.info(f"block1 hash: {block1.hash}")

        # make sure block hash is in waiting list
        wait_for_waiting_blocks({block1.hash}, self.nodes[0], self.log)

        # send child block
        block2 = self.chain.next_block(block_count,
                                       spend=out[1],
                                       extra_txns=10)
        block_count += 1
        node0.send_message(msg_block(block2))
        self.log.info(f"block2 hash: {block2.hash}")

        def wait_for_log():
            line_text = block2.hash + " will not be considered by the current"
            for line in open(
                    glob.glob(self.options.tmpdir + "/node0" +
                              "/regtest/bitcoind.log")[0]):
                if line_text in line:
                    self.log.info("Found line: %s", line)
                    return True
            return False

        wait_until(wait_for_log)

        self.nodes[0].waitaftervalidatingblock(block1.hash, "remove")

        # wait till validation of block or blocks finishes
        node0.sync_with_ping()

        # block that arrived last on competing chain should be active
        assert_equal(block2.hash, self.nodes[0].getbestblockhash())
    def run_test(self):
        block_count = 0

        # Create a P2P connection
        node0 = NodeConnCB()
        connection = NodeConn('127.0.0.1', p2p_port(0), self.nodes[0], node0)
        node0.add_connection(connection)

        node1 = NodeConnCB()
        connection = NodeConn('127.0.0.1', p2p_port(0), self.nodes[0], node1)
        node1.add_connection(connection)

        node2 = NodeConnCB()
        connection = NodeConn('127.0.0.1', p2p_port(0), self.nodes[0], node2)
        node2.add_connection(connection)

        NetworkThread().start()
        # wait_for_verack ensures that the P2P connection is fully up.
        node0.wait_for_verack()
        node1.wait_for_verack()
        node2.wait_for_verack()

        self.chain.set_genesis_hash(int(self.nodes[0].getbestblockhash(), 16))

        _, out, block_count = prepare_init_chain(self.chain, 101, 100, block_0=False, start_block=0, node=node0)

        self.log.info("waiting for block height 101 via rpc")
        self.nodes[0].waitforblockheight(101)

        tip_block_num = block_count - 1

        block2_hard = self.chain.next_block(block_count, spend=out[0], extra_txns=8)
        block_count += 1
        self.chain.set_tip(tip_block_num)

        block3_easier = self.chain.next_block(block_count, spend=out[0], extra_txns=2)
        block_count += 1
        self.chain.set_tip(tip_block_num)

        block4_hard = self.chain.next_block(block_count, spend=out[0], extra_txns=10)
        block_count += 1

        # send two "hard" blocks, with waitaftervalidatingblock we artificially
        # extend validation time.
        self.log.info(f"hard block2 hash: {block2_hard.hash}")
        self.nodes[0].waitaftervalidatingblock(block2_hard.hash, "add")
        self.log.info(f"hard block4 hash: {block4_hard.hash}")
        self.nodes[0].waitaftervalidatingblock(block4_hard.hash, "add")
        # make sure block hashes are in waiting list
        wait_for_waiting_blocks({block2_hard.hash, block4_hard.hash}, self.nodes[0], self.log)

        node0.send_message(msg_block(block2_hard))
        node1.send_message(msg_block(block4_hard))
 
        # make sure we started validating blocks
        wait_for_validating_blocks({block2_hard.hash, block4_hard.hash}, self.nodes[0], self.log)

        self.log.info(f"easier hash: {block3_easier.hash}")
        node2.send_message(msg_block(block3_easier))

        self.nodes[0].waitforblockheight(102)
        assert_equal(block3_easier.hash, self.nodes[0].getbestblockhash())

        # now we can remove waiting status from blocks and finish their validation
        self.nodes[0].waitaftervalidatingblock(block2_hard.hash, "remove")
        self.nodes[0].waitaftervalidatingblock(block4_hard.hash, "remove")

        # wait till validation of block or blocks finishes
        node0.sync_with_ping()

        # now we want our precious block to be one of the harder blocks (block4_hard)
        self.nodes[0].preciousblock(block4_hard.hash)
        assert_equal(block4_hard.hash, self.nodes[0].getbestblockhash())
Example #12
0
    def run_test(self):
        block_count = 0

        # Create a P2P connection
        node0 = NodeConnCB()
        connection = NodeConn('127.0.0.1', p2p_port(0), self.nodes[0], node0)
        node0.add_connection(connection)

        node1 = NodeConnCB()
        connection = NodeConn('127.0.0.1', p2p_port(0), self.nodes[0], node1)
        node1.add_connection(connection)

        node2 = NodeConnCB()
        connection = NodeConn('127.0.0.1', p2p_port(0), self.nodes[0], node2)
        node2.add_connection(connection)

        node3 = NodeConnCB()
        connection = NodeConn('127.0.0.1', p2p_port(0), self.nodes[0], node3)
        node3.add_connection(connection)

        NetworkThread().start()
        # wait_for_verack ensures that the P2P connection is fully up.
        node0.wait_for_verack()
        node1.wait_for_verack()
        node2.wait_for_verack()
        node3.wait_for_verack()

        self.chain.set_genesis_hash(int(self.nodes[0].getbestblockhash(), 16))
        block = self.chain.next_block(block_count)
        block_count += 1
        self.chain.save_spendable_output()
        node0.send_message(msg_block(block))

        for i in range(100):
            block = self.chain.next_block(block_count)
            block_count += 1
            self.chain.save_spendable_output()
            node0.send_message(msg_block(block))

        out = []
        for i in range(100):
            out.append(self.chain.get_spendable_output())

        self.log.info("waiting for block height 101 via rpc")
        self.nodes[0].waitforblockheight(101)

        tip_block_num = block_count - 1

        block2 = self.chain.next_block(block_count, spend=out[0], extra_txns=8)
        block_count += 1

        self.chain.set_tip(tip_block_num)

        block3 = self.chain.next_block(block_count,
                                       spend=out[0],
                                       extra_txns=10)
        block_count += 1

        self.chain.set_tip(tip_block_num)

        block4 = self.chain.next_block(block_count,
                                       spend=out[0],
                                       extra_txns=12)
        block_count += 1

        self.chain.set_tip(tip_block_num)

        block5 = self.chain.next_block(block_count,
                                       spend=out[0],
                                       extra_txns=14)
        block5_num = block_count
        block_count += 1

        block6 = self.chain.next_block(block_count, spend=out[1], extra_txns=8)
        block_count += 1

        self.chain.set_tip(block5_num)

        block7 = self.chain.next_block(block_count,
                                       spend=out[1],
                                       extra_txns=10)

        self.log.info(f"block2 hash: {block2.hash}")
        self.nodes[0].waitaftervalidatingblock(block2.hash, "add")
        self.log.info(f"block3 hash: {block3.hash}")
        self.nodes[0].waitaftervalidatingblock(block3.hash, "add")
        self.log.info(f"block4 hash: {block4.hash}")
        self.nodes[0].waitaftervalidatingblock(block4.hash, "add")

        # make sure block hashes are in waiting list
        wait_for_waiting_blocks({block2.hash, block3.hash, block4.hash},
                                self.nodes[0], self.log)

        node0.send_message(msg_block(block2))
        # make sure we started validating block2 first as we expect this one to
        # be terminated later on in the test before its validation is complete
        # (algorithm for premature termination selects based on block height and
        # and validation duration - those that are in validation with smaller
        # height and longer are terminated first)
        wait_for_validating_blocks({block2.hash}, self.nodes[0], self.log)

        node1.send_message(msg_block(block3))
        node2.send_message(msg_block(block4))
        # make sure we started validating blocks
        wait_for_validating_blocks({block2.hash, block3.hash, block4.hash},
                                   self.nodes[0], self.log)

        node3.send_message(msg_block(block5))
        self.log.info(f"block5 hash: {block5.hash}")

        # check log file for logging about which block validation was terminated
        termination_log_found = False
        for line in open(
                glob.glob(self.options.tmpdir + "/node0" +
                          "/regtest/bitcoind.log")[0]):
            if f"Block {block2.hash} will not be considered by the current tip activation as the maximum parallel block" in line:
                termination_log_found = True
                self.log.info("Found line: %s", line.strip())
                break

        self.log.info(f"block6 hash: {block6.hash}")
        self.nodes[0].waitaftervalidatingblock(block6.hash, "add")
        self.log.info(f"block7 hash: {block7.hash}")
        self.nodes[0].waitaftervalidatingblock(block7.hash, "add")

        wait_for_waiting_blocks({block6.hash, block7.hash}, self.nodes[0],
                                self.log)

        node3.send_message(msg_block(block6))
        wait_for_validating_blocks({block6.hash}, self.nodes[0], self.log)

        node3.send_message(msg_block(block7))
        wait_for_validating_blocks({block7.hash}, self.nodes[0], self.log)

        self.nodes[0].waitaftervalidatingblock(block2.hash, "remove")
        # block2 should be canceled.
        wait_for_not_validating_blocks({block2.hash}, self.nodes[0], self.log)

        self.log.info("removing wait status from block7")
        self.nodes[0].waitaftervalidatingblock(block7.hash, "remove")

        # finish block7 validation
        wait_for_not_validating_blocks({block7.hash}, self.nodes[0], self.log)

        # remove wait status from block to finish its validations so the test exits properly
        self.nodes[0].waitaftervalidatingblock(block3.hash, "remove")
        self.nodes[0].waitaftervalidatingblock(block4.hash, "remove")
        self.nodes[0].waitaftervalidatingblock(block6.hash, "remove")

        # wait till validation of block or blocks finishes
        node0.sync_with_ping()

        # block7 should be active in the end
        assert_equal(block7.hash, self.nodes[0].getbestblockhash())

        # check log file for logging about which block validation was terminated
        termination_log_found = False
        for line in open(
                glob.glob(self.options.tmpdir + "/node0" +
                          "/regtest/bitcoind.log")[0]):
            if f"Block {block2.hash} validation was terminated before completion." in line:
                termination_log_found = True
                self.log.info("Found line: %s", line.strip())
                break

        assert_equal(termination_log_found, True)
    def run_test(self):

        block_count = 0

        node0 = NodeConnCB()
        connection = NodeConn('127.0.0.1', p2p_port(0), self.nodes[0], node0)
        node0.add_connection(connection)

        node1 = NodeConnCB()
        connection = NodeConn('127.0.0.1', p2p_port(0), self.nodes[0], node1)
        node1.add_connection(connection)

        node2 = NodeConnCB()
        connection = NodeConn('127.0.0.1', p2p_port(0), self.nodes[0], node2)
        node2.add_connection(connection)

        NetworkThread().start()
        # wait_for_verack ensures that the P2P connection is fully up.
        node0.wait_for_verack()
        node1.wait_for_verack()
        node2.wait_for_verack()

        self.log.info("Sending blocks to get spendable output")
        self.chain.set_genesis_hash(int(self.nodes[0].getbestblockhash(), 16))
        block = self.chain.next_block(block_count)
        block_count += 1
        self.chain.save_spendable_output()
        node0.send_message(msg_block(block))

        for i in range(100):
            block = self.chain.next_block(block_count)
            block_count += 1
            self.chain.save_spendable_output()
            node0.send_message(msg_block(block))

        out = []
        for i in range(100):
            out.append(self.chain.get_spendable_output())

        self.log.info("waiting for block height 101 via rpc")
        self.nodes[0].waitforblockheight(101)

        tip_block_num = block_count - 1

        block2 = self.chain.next_block(block_count, spend=out[0], extra_txns=1)
        block2_count = block_count
        block_count += 1
        self.log.info(f"blockA hash: {block2.hash}")
        node0.send_message(msg_block(block2))
        self.nodes[0].waitforblockheight(102)

        block3_hard = self.chain.next_block(block_count,
                                            spend=out[1],
                                            extra_txns=8)
        block_count += 1
        self.chain.set_tip(block2_count)

        block4_easier = self.chain.next_block(block_count,
                                              spend=out[1],
                                              extra_txns=2)
        block_count += 1
        self.chain.set_tip(block2_count)

        block5_hard = self.chain.next_block(block_count,
                                            spend=out[1],
                                            extra_txns=10)
        block_count += 1

        # send two "hard" blocks, with waitaftervalidatingblock we artificially
        # extend validation time.
        self.log.info(f"hard block3 hash: {block3_hard.hash}")
        self.nodes[0].waitaftervalidatingblock(block3_hard.hash, "add")
        self.log.info(f"hard block5 hash: {block5_hard.hash}")
        self.nodes[0].waitaftervalidatingblock(block5_hard.hash, "add")
        # make sure block hashes are in waiting list
        wait_for_waiting_blocks({block3_hard.hash, block5_hard.hash},
                                self.nodes[0], self.log)

        self.log.info(
            "Sending blocks 3,4,5 on branch 2 for parallel validation")
        node0.send_message(msg_block(block3_hard))
        node2.send_message(msg_block(block5_hard))

        # make sure we started validating blocks
        wait_for_validating_blocks({block3_hard.hash, block5_hard.hash},
                                   self.nodes[0], self.log)

        self.log.info(f"easier hash: {block4_easier.hash}")
        node1.send_message(msg_block(block4_easier))
        self.nodes[0].waitforblockheight(103)

        # Because 4 is easy to validate it will be validated first and set as active tip
        assert_equal(block4_easier.hash, self.nodes[0].getbestblockhash())

        # now we can remove waiting status from blocks and finish their validation
        self.nodes[0].waitaftervalidatingblock(block3_hard.hash, "remove")
        self.nodes[0].waitaftervalidatingblock(block5_hard.hash, "remove")

        # wait till validation of block or blocks finishes
        node0.sync_with_ping()

        # easier block should still be on tip
        assert_equal(block4_easier.hash, self.nodes[0].getbestblockhash())

        self.log.info("Sending blocks 6,7,8 on competing chain to cause reorg")
        self.chain.set_tip(tip_block_num)

        block6 = self.chain.next_block(block_count, spend=out[0], extra_txns=2)
        block_count += 1
        self.log.info(f"block6 hash: {block6.hash}")
        node0.send_message(msg_block(block6))

        block7 = self.chain.next_block(block_count)
        block_count += 1
        self.log.info(f"block7: {block7.hash}")
        node0.send_message(msg_block(block7))

        # send one to cause reorg this should be active
        block8 = self.chain.next_block(block_count)
        block_count += 1
        self.log.info(f"block8: {block8.hash}")
        node0.send_message(msg_block(block8))

        self.nodes[0].waitforblockheight(104)
        assert_equal(block8.hash, self.nodes[0].getbestblockhash())

        self.log.info(
            "Invalidating block7 on competing chain to reorg to first branch again"
        )
        self.log.info(f"invalidating hash {block7.hash}")
        self.nodes[0].invalidateblock(block7.hash)

        #after invalidating, active block should be the one first validated on first branch
        assert_equal(block4_easier.hash, self.nodes[0].getbestblockhash())
Example #14
0
    def run_test(self):
        block_count = 0

        # Create a P2P connections
        node0 = NodeConnCB()
        connection = NodeConn('127.0.0.1', p2p_port(0), self.nodes[0], node0)
        node0.add_connection(connection)

        node1 = NodeConnCB()
        connection = NodeConn('127.0.0.1', p2p_port(0), self.nodes[0], node1)
        node1.add_connection(connection)

        NetworkThread().start()
        # wait_for_verack ensures that the P2P connection is fully up.
        node0.wait_for_verack()
        node1.wait_for_verack()

        self.chain.set_genesis_hash(int(self.nodes[0].getbestblockhash(), 16))

        _, outs, block_count = prepare_init_chain(self.chain, 101, 1, block_0=False, start_block=0, node=node0)
        out = outs[0]

        self.log.info("waiting for block height 101 via rpc")
        self.nodes[0].waitforblockheight(101)

        tip_block_num = block_count - 1

        # adding extra transactions to get different block hashes
        block2_hard = self.chain.next_block(block_count, spend=out, extra_txns=8)
        block_count += 1

        self.chain.set_tip(tip_block_num)

        block3_easier = self.chain.next_block(block_count, spend=out, extra_txns=2)
        block_count += 1

        mining_candidate = self.nodes[0].getminingcandidate()
        block4_hard = self.chain.next_block(block_count)
        block4_hard.hashPrevBlock = int(mining_candidate["prevhash"], 16)
        block4_hard.nTime = mining_candidate["time"]
        block4_hard.nVersion = mining_candidate["version"]
        block4_hard.solve()

        mining_solution = {"id": mining_candidate["id"],
                           "nonce": block4_hard.nNonce,
                           "coinbase": ToHex(block4_hard.vtx[0]),
                           "time": mining_candidate["time"],
                           "version": mining_candidate["version"]}

        # send three "hard" blocks, with waitaftervalidatingblock we artificially
        # extend validation time.
        self.log.info(f"hard block2 hash: {block2_hard.hash}")
        self.nodes[0].waitaftervalidatingblock(block2_hard.hash, "add")
        self.log.info(f"hard block4 hash: {block4_hard.hash}")
        self.nodes[0].waitaftervalidatingblock(block4_hard.hash, "add")

        # make sure block hashes are in waiting list
        wait_for_waiting_blocks({block2_hard.hash, block4_hard.hash}, self.nodes[0], self.log)

        # send one block via p2p and one via rpc
        node0.send_message(msg_block(block2_hard))

        # making rpc call submitminingsolution in a separate thread because waitaftervalidation is blocking
        # the return of submitminingsolution
        submitminingsolution_thread = threading.Thread(target=self.nodes[0].submitminingsolution, args=(mining_solution,))
        submitminingsolution_thread.start()

        # because self.nodes[0] rpc is blocked we use another rpc client
        rpc_client = get_rpc_proxy(rpc_url(get_datadir_path(self.options.tmpdir, 0), 0), 0,
                                   coveragedir=self.options.coveragedir)

        wait_for_validating_blocks({block2_hard.hash, block4_hard.hash}, rpc_client, self.log)

        self.log.info(f"easy block3 hash: {block3_easier.hash}")
        node1.send_message(msg_block(block3_easier))

        rpc_client.waitforblockheight(102)
        assert_equal(block3_easier.hash, rpc_client.getbestblockhash())

        # now we can remove waiting status from blocks and finish their validation
        rpc_client.waitaftervalidatingblock(block2_hard.hash, "remove")
        rpc_client.waitaftervalidatingblock(block4_hard.hash, "remove")
        submitminingsolution_thread.join()

        # wait till validation of block or blocks finishes
        node0.sync_with_ping()

        # easier block should still be on tip
        assert_equal(block3_easier.hash, self.nodes[0].getbestblockhash())
    def run_test(self):
        block_count = 0

        # Create a P2P connections
        node0 = NodeConnCB()
        connection = NodeConn('127.0.0.1', p2p_port(0), self.nodes[0], node0)
        node0.add_connection(connection)

        node1 = NodeConnCB()
        connection = NodeConn('127.0.0.1', p2p_port(0), self.nodes[0], node1)
        node1.add_connection(connection)

        NetworkThread().start()
        # wait_for_verack ensures that the P2P connection is fully up.
        node0.wait_for_verack()
        node1.wait_for_verack()

        self.chain.set_genesis_hash(int(self.nodes[0].getbestblockhash(), 16))
        block = self.chain.next_block(block_count)
        block_count += 1
        self.chain.save_spendable_output()
        node0.send_message(msg_block(block))

        num_blocks = 150
        for i in range(num_blocks):
            block = self.chain.next_block(block_count)
            block_count += 1
            self.chain.save_spendable_output()
            node0.send_message(msg_block(block))

        out = []
        for i in range(num_blocks):
            out.append(self.chain.get_spendable_output())

        self.log.info("waiting for block height 151 via rpc")
        self.nodes[0].waitforblockheight(num_blocks + 1)

        tip_block_num = block_count - 1

        # left branch
        block2 = self.chain.next_block(block_count,
                                       spend=out[0:9],
                                       extra_txns=8)
        block_count += 1
        node0.send_message(msg_block(block2))
        self.log.info(f"block2 hash: {block2.hash}")

        self.nodes[0].waitforblockheight(num_blocks + 2)

        # send blocks 3,4 for parallel validation on left branch
        self.chain.set_tip(tip_block_num)
        block3 = self.chain.next_block(block_count,
                                       spend=out[10:19],
                                       extra_txns=10)
        block_count += 1

        block4 = self.chain.next_block(block_count,
                                       spend=out[20:29],
                                       extra_txns=8)
        block_count += 1

        # send two "hard" blocks, with waitaftervalidatingblock we artificially
        # extend validation time.
        self.log.info(f"block3 hash: {block3.hash}")
        self.log.info(f"block4 hash: {block4.hash}")
        self.nodes[0].waitaftervalidatingblock(block4.hash, "add")

        # make sure block hashes are in waiting list
        wait_for_waiting_blocks({block4.hash}, self.nodes[0], self.log)

        node1.send_message(msg_block(block3))
        node1.send_message(msg_block(block4))

        # make sure we started validating blocks
        wait_for_validating_blocks({block4.hash}, self.nodes[0], self.log)

        # right branch
        self.chain.set_tip(tip_block_num)
        block5 = self.chain.next_block(block_count)
        # Add some txns from block2 & block3 to block5, just to check that they get
        # filtered from the mempool and not re-added
        block5_duplicated_txns = block3.vtx[1:3] + block2.vtx[1:3]
        self.chain.update_block(block_count, block5_duplicated_txns)
        block_count += 1
        node0.send_message(msg_block(block5))
        self.log.info(f"block5 hash: {block5.hash}")

        # and two blocks to extend second branch to cause reorg
        # - they must be sent from the same node as otherwise they will be
        #   rejected with "prev block not found" as we don't wait for the first
        #   block to arrive so there is a race condition which block is seen
        #   first when using multiple connections
        block6 = self.chain.next_block(block_count)
        node0.send_message(msg_block(block6))
        self.log.info(f"block6 hash: {block6.hash}")
        block_count += 1
        block7 = self.chain.next_block(block_count)
        node0.send_message(msg_block(block7))
        self.log.info(f"block7 hash: {block7.hash}")
        block_count += 1

        self.nodes[0].waitforblockheight(num_blocks + 4)
        assert_equal(block7.hash, self.nodes[0].getbestblockhash())

        self.log.info(
            "releasing wait status on parallel blocks to finish their validation"
        )
        self.nodes[0].waitaftervalidatingblock(block4.hash, "remove")

        # wait till validation of block or blocks finishes
        node0.sync_with_ping()

        # block that arrived last on competing chain should be active
        assert_equal(block7.hash, self.nodes[0].getbestblockhash())

        # make sure that transactions from block2 and 3 (except coinbase, and those also
        # in block 5) are in mempool
        not_expected_in_mempool = set()
        for txn in block5_duplicated_txns:
            not_expected_in_mempool.add(txn.hash)
        expected_in_mempool = set()
        for txn in block2.vtx[1:] + block3.vtx[1:]:
            expected_in_mempool.add(txn.hash)
        expected_in_mempool = expected_in_mempool.difference(
            not_expected_in_mempool)

        mempool = self.nodes[0].getrawmempool()
        assert_equal(expected_in_mempool, set(mempool))
    def run_test(self):
        block_count = 0

        # Create a P2P connections
        node0 = NodeConnCB()
        connection = NodeConn('127.0.0.1', p2p_port(0), self.nodes[0], node0)
        node0.add_connection(connection)

        node1 = NodeConnCB()
        connection = NodeConn('127.0.0.1', p2p_port(0), self.nodes[0], node1)
        node1.add_connection(connection)

        node2 = NodeConnCB()
        connection = NodeConn('127.0.0.1', p2p_port(0), self.nodes[0], node2)
        node2.add_connection(connection)

        NetworkThread().start()
        # wait_for_verack ensures that the P2P connection is fully up.
        node0.wait_for_verack()
        node1.wait_for_verack()
        node2.wait_for_verack()

        self.chain.set_genesis_hash(int(self.nodes[0].getbestblockhash(), 16))
        block = self.chain.next_block(block_count)
        block_count += 1
        self.chain.save_spendable_output()
        node0.send_message(msg_block(block))

        for i in range(100):
            block = self.chain.next_block(block_count)
            block_count += 1
            self.chain.save_spendable_output()
            node0.send_message(msg_block(block))

        out = []
        for i in range(100):
            out.append(self.chain.get_spendable_output())

        self.log.info("waiting for block height 101 via rpc")
        self.nodes[0].waitforblockheight(101)

        tip_block_num = block_count - 1

        # adding extra transactions to get different block hashes
        block2_hard = self.chain.next_block(block_count, spend=out[0], extra_txns=8)
        block_count += 1

        self.chain.set_tip(tip_block_num)

        block3_easier = self.chain.next_block(block_count, spend=out[0], extra_txns=2)
        block_count += 1

        self.chain.set_tip(tip_block_num)

        block4_hard = self.chain.next_block(block_count, spend=out[0], extra_txns=10)
        block_count += 1

        # send two "hard" blocks, with waitaftervalidatingblock we artificially
        # extend validation time.
        self.log.info(f"hard block2 hash: {block2_hard.hash}")
        self.nodes[0].waitaftervalidatingblock(block2_hard.hash, "add")
        self.log.info(f"hard block4 hash: {block4_hard.hash}")
        self.nodes[0].waitaftervalidatingblock(block4_hard.hash, "add")
        # make sure block hashes are in waiting list
        wait_for_waiting_blocks({block2_hard.hash, block4_hard.hash}, self.nodes[0], self.log)

        node0.send_message(msg_block(block2_hard))
        node1.send_message(msg_block(block4_hard))

        # make sure we started validating blocks
        wait_for_validating_blocks({block2_hard.hash, block4_hard.hash}, self.nodes[0], self.log)

        self.log.info(f"easier block3 hash: {block3_easier.hash}")
        node2.send_message(msg_block(block3_easier))

        self.nodes[0].waitforblockheight(102)
        assert_equal(block3_easier.hash, self.nodes[0].getbestblockhash())

        # now we can remove waiting status from blocks and finish their validation
        self.nodes[0].waitaftervalidatingblock(block2_hard.hash, "remove")
        self.nodes[0].waitaftervalidatingblock(block4_hard.hash, "remove")

        # wait till validation of block or blocks finishes
        node0.sync_with_ping()

        # easier block should still be on tip
        assert_equal(block3_easier.hash, self.nodes[0].getbestblockhash())
Example #17
0
    def run_test(self):
        node0 = NodeConnCB()

        connections = []
        connections.append(
            NodeConn('127.0.0.1', p2p_port(0), self.nodes[0], node0))
        node0.add_connection(connections[0])

        NetworkThread().start()
        node0.wait_for_verack()

        # Set node time to 60 days ago
        self.nodes[0].setmocktime(int(time.time()) - 60 * 24 * 60 * 6)

        # Generating a chain of 10 blocks
        block_hashes = self.nodes[0].generate(nblocks=10)

        # Create longer chain starting 2 blocks before current tip
        height = len(block_hashes) - 2
        block_hash = block_hashes[height - 1]
        block_time = self.nodes[0].getblockheader(block_hash)["mediantime"] + 1
        new_blocks = self.build_chain(5, block_hash, height, block_time)

        # Force reorg to a longer chain
        node0.send_message(msg_headers(new_blocks))
        node0.wait_for_getdata()
        for block in new_blocks:
            node0.send_and_ping(msg_block(block))

        # Check that reorg succeeded
        assert_equal(self.nodes[0].getblockcount(), 13)

        stale_hash = int(block_hashes[-1], 16)

        # Check that getdata request for stale block succeeds
        self.send_block_request(stale_hash, node0)
        test_function = lambda: self.last_block_equals(stale_hash, node0)
        wait_until(test_function, timeout=3)

        # Check that getheader request for stale block header succeeds
        self.send_header_request(stale_hash, node0)
        test_function = lambda: self.last_header_equals(stale_hash, node0)
        wait_until(test_function, timeout=3)

        # Longest chain is extended so stale is much older than chain tip
        self.nodes[0].setmocktime(0)
        tip = self.nodes[0].generate(nblocks=1)[0]
        assert_equal(self.nodes[0].getblockcount(), 14)

        # Send getdata & getheaders to refresh last received getheader message
        block_hash = int(tip, 16)
        self.send_block_request(block_hash, node0)
        self.send_header_request(block_hash, node0)
        node0.sync_with_ping()

        # Request for very old stale block should now fail
        self.send_block_request(stale_hash, node0)
        time.sleep(3)
        assert not self.last_block_equals(stale_hash, node0)

        # Request for very old stale block header should now fail
        self.send_header_request(stale_hash, node0)
        time.sleep(3)
        assert not self.last_header_equals(stale_hash, node0)

        # Verify we can fetch very old blocks and headers on the active chain
        block_hash = int(block_hashes[2], 16)
        self.send_block_request(block_hash, node0)
        self.send_header_request(block_hash, node0)
        node0.sync_with_ping()

        self.send_block_request(block_hash, node0)
        test_function = lambda: self.last_block_equals(block_hash, node0)
        wait_until(test_function, timeout=3)

        self.send_header_request(block_hash, node0)
        test_function = lambda: self.last_header_equals(block_hash, node0)
        wait_until(test_function, timeout=3)
    def run_test(self):
        block_count = 0

        # Create a P2P connections
        node0 = NodeConnCB()
        connection0 = NodeConn('127.0.0.1', p2p_port(0), self.nodes[0], node0)
        node0.add_connection(connection0)

        node1 = NodeConnCB()
        connection1 = NodeConn('127.0.0.1', p2p_port(0), self.nodes[0], node1)
        node1.add_connection(connection1)

        # *** Prepare node connection for early announcements testing
        node2 = NodeConnCB()
        node2.add_connection(
            NodeConn('127.0.0.1', p2p_port(0), self.nodes[0], node2))

        NetworkThread().start()
        # wait_for_verack ensures that the P2P connection is fully up.
        node0.wait_for_verack()
        node1.wait_for_verack()

        # *** Activate early announcement functionality for this connection
        #     After this point the early announcements are not received yet -
        #     we still need to set latest announced block (CNode::pindexBestKnownBlock)
        #     which is set for e.g. by calling best headers message with locator
        #     set to non-null
        node2.wait_for_verack()
        node2.send_message(msg_sendcmpct(announce=True))

        self.chain.set_genesis_hash(int(self.nodes[0].getbestblockhash(), 16))

        _, outs, block_count = prepare_init_chain(self.chain,
                                                  101,
                                                  1,
                                                  block_0=False,
                                                  start_block=0,
                                                  node=node0)
        out = outs[0]

        self.log.info("waiting for block height 101 via rpc")
        self.nodes[0].waitforblockheight(101)

        tip_block_num = block_count - 1

        # adding extra transactions to get different block hashes
        block2_hard = self.chain.next_block(block_count,
                                            spend=out,
                                            extra_txns=8)
        block_count += 1

        self.chain.set_tip(tip_block_num)

        block3_easier = self.chain.next_block(block_count,
                                              spend=out,
                                              extra_txns=2)
        block_count += 1

        self.chain.set_tip(tip_block_num)

        block4_hard = self.chain.next_block(block_count,
                                            spend=out,
                                            extra_txns=10)
        block_count += 1

        # send three "hard" blocks, with waitaftervalidatingblock we artificially
        # extend validation time.
        self.log.info(f"hard block2 hash: {block2_hard.hash}")
        self.nodes[0].waitaftervalidatingblock(block2_hard.hash, "add")
        self.log.info(f"hard block4 hash: {block4_hard.hash}")
        self.nodes[0].waitaftervalidatingblock(block4_hard.hash, "add")

        # make sure block hashes are in waiting list
        wait_for_waiting_blocks({block2_hard.hash, block4_hard.hash},
                                self.nodes[0], self.log)

        # *** Complete early announcement setup by sending getheaders message
        #     with a non-null locator (pointing to the last block that we know
        #     of on python side - we claim that we know of all the blocks that
        #     bitcoind node knows of)
        #
        #     We also set on_cmpctblock handler as early announced blocks are
        #     announced via compact block messages instead of inv messages
        node2.send_and_ping(
            msg_getheaders(
                locator_have=[int(self.nodes[0].getbestblockhash(), 16)]))
        receivedAnnouncement = False
        waiting_for_announcement_block_hash = block2_hard.sha256

        def on_cmpctblock(conn, message):
            nonlocal receivedAnnouncement
            message.header_and_shortids.header.calc_sha256()
            if message.header_and_shortids.header.sha256 == waiting_for_announcement_block_hash:
                receivedAnnouncement = True

        node2.on_cmpctblock = on_cmpctblock

        # send one block via p2p and one via rpc
        node0.send_message(msg_block(block2_hard))

        # *** make sure that we receive announcement of the block before it has
        #     been validated
        wait_until(lambda: receivedAnnouncement)

        # making rpc call submitblock in a separate thread because waitaftervalidation is blocking
        # the return of submitblock
        submitblock_thread = threading.Thread(target=self.nodes[0].submitblock,
                                              args=(ToHex(block4_hard), ))
        submitblock_thread.start()

        # because self.nodes[0] rpc is blocked we use another rpc client
        rpc_client = get_rpc_proxy(rpc_url(
            get_datadir_path(self.options.tmpdir, 0), 0),
                                   0,
                                   coveragedir=self.options.coveragedir)

        wait_for_validating_blocks({block2_hard.hash, block4_hard.hash},
                                   rpc_client, self.log)

        # *** prepare to intercept block3_easier announcement - it will not be
        #     announced before validation is complete as early announcement is
        #     limited to announcing one block per height (siblings are ignored)
        #     but after validation is complete we should still get the announcing
        #     compact block message
        receivedAnnouncement = False
        waiting_for_announcement_block_hash = block3_easier.sha256

        self.log.info(f"easy block3 hash: {block3_easier.hash}")
        node1.send_message(msg_block(block3_easier))

        # *** Make sure that we receive compact block announcement of the block
        #     after the validation is complete even though it was not the first
        #     block that was received by bitcoind node.
        #
        #     Also make sure that we receive inv announcement of the block after
        #     the validation is complete by the nodes that are not using early
        #     announcement functionality.
        wait_until(lambda: receivedAnnouncement)
        node0.wait_for_inv([CInv(CInv.BLOCK, block3_easier.sha256)])
        # node 1 was the sender but receives inv for block non the less
        # (with early announcement that's not the case - sender does not receive the announcement)
        node1.wait_for_inv([CInv(CInv.BLOCK, block3_easier.sha256)])

        rpc_client.waitforblockheight(102)
        assert_equal(block3_easier.hash, rpc_client.getbestblockhash())

        # now we can remove waiting status from blocks and finish their validation
        rpc_client.waitaftervalidatingblock(block2_hard.hash, "remove")
        rpc_client.waitaftervalidatingblock(block4_hard.hash, "remove")
        submitblock_thread.join()

        # wait till validation of block or blocks finishes
        node0.sync_with_ping()

        # easier block should still be on tip
        assert_equal(block3_easier.hash, self.nodes[0].getbestblockhash())