def test_broadcast(self):
        self.log.info("Test that mempool reattempts delivery of locally submitted transaction")
        node = self.nodes[0]

        min_relay_fee = node.getnetworkinfo()["relayfee"]
        utxos = create_confirmed_utxos(min_relay_fee, node, 10)

        self.disconnect_nodes(0, 1)

        self.log.info("Generate transactions that only node 0 knows about")

        # generate a wallet txn
        addr = node.getnewaddress()
        wallet_tx_hsh = node.sendtoaddress(addr, 0.0001)

        # generate a txn using sendrawtransaction
        us0 = utxos.pop()
        inputs = [{"txid": us0["txid"], "vout": us0["vout"]}]
        outputs = {addr: 0.0001}
        tx = node.createrawtransaction(inputs, outputs)
        node.settxfee(min_relay_fee)
        txF = node.fundrawtransaction(tx)
        txFS = node.signrawtransactionwithwallet(txF["hex"])
        rpc_tx_hsh = node.sendrawtransaction(txFS["hex"])

        # check transactions are in unbroadcast using rpc
        mempoolinfo = self.nodes[0].getmempoolinfo()
        assert_equal(mempoolinfo['unbroadcastcount'], 2)
        mempool = self.nodes[0].getrawmempool(True)
        for tx in mempool:
            assert_equal(mempool[tx]['unbroadcast'], True)

        # check that second node doesn't have these two txns
        mempool = self.nodes[1].getrawmempool()
        assert rpc_tx_hsh not in mempool
        assert wallet_tx_hsh not in mempool

        # ensure that unbroadcast txs are persisted to mempool.dat
        self.restart_node(0)

        self.log.info("Reconnect nodes & check if they are sent to node 1")
        self.connect_nodes(0, 1)

        # fast forward into the future & ensure that the second node has the txns
        node.mockscheduler(MAX_INITIAL_BROADCAST_DELAY)
        self.sync_mempools(timeout=30)
        mempool = self.nodes[1].getrawmempool()
        assert rpc_tx_hsh in mempool
        assert wallet_tx_hsh in mempool

        # check that transactions are no longer in first node's unbroadcast set
        mempool = self.nodes[0].getrawmempool(True)
        for tx in mempool:
            assert_equal(mempool[tx]['unbroadcast'], False)

        self.log.info("Add another connection & ensure transactions aren't broadcast again")

        conn = node.add_p2p_connection(P2PTxInvStore())
        node.mockscheduler(MAX_INITIAL_BROADCAST_DELAY)
        time.sleep(2) # allow sufficient time for possibility of broadcast
        assert_equal(len(conn.get_invs()), 0)

        self.disconnect_nodes(0, 1)
        node.disconnect_p2ps()
Example #2
0
    def run_test(self):
        node = self.nodes[0]

        self.log.info('Start with empty mempool and 101 blocks')
        # The last 100 coinbase transactions are premature
        blockhash = node.generate(101)[0]
        txid = node.getblock(blockhash=blockhash, verbosity=2)["tx"][0]["txid"]
        assert_equal(node.getmempoolinfo()['size'], 0)

        self.log.info("Submit parent with multiple script branches to mempool")
        hashlock = hash160(b'Preimage')
        witness_script = CScript([
            OP_IF, OP_HASH160, hashlock, OP_EQUAL, OP_ELSE, OP_TRUE, OP_ENDIF
        ])
        witness_program = sha256(witness_script)
        script_pubkey = CScript([OP_0, witness_program])

        parent = CTransaction()
        parent.vin.append(CTxIn(COutPoint(int(txid, 16), 0), b""))
        parent.vout.append(CTxOut(int(9.99998 * COIN), script_pubkey))
        parent.rehash()

        privkeys = [node.get_deterministic_priv_key().key]
        raw_parent = node.signrawtransactionwithkey(
            hexstring=parent.serialize().hex(), privkeys=privkeys)['hex']
        parent_txid = node.sendrawtransaction(hexstring=raw_parent,
                                              maxfeerate=0)
        node.generate(1)

        peer_wtxid_relay = node.add_p2p_connection(P2PTxInvStore())

        # Create a new transaction with witness solving first branch
        child_witness_script = CScript([OP_TRUE])
        child_witness_program = sha256(child_witness_script)
        child_script_pubkey = CScript([OP_0, child_witness_program])

        child_one = CTransaction()
        child_one.vin.append(CTxIn(COutPoint(int(parent_txid, 16), 0), b""))
        child_one.vout.append(CTxOut(int(9.99996 * COIN), child_script_pubkey))
        child_one.wit.vtxinwit.append(CTxInWitness())
        child_one.wit.vtxinwit[0].scriptWitness.stack = [
            b'Preimage', b'\x01', witness_script
        ]
        child_one_wtxid = child_one.getwtxid()
        child_one_txid = child_one.rehash()

        # Create another identical transaction with witness solving second branch
        child_two = deepcopy(child_one)
        child_two.wit.vtxinwit[0].scriptWitness.stack = [b'', witness_script]
        child_two_wtxid = child_two.getwtxid()
        child_two_txid = child_two.rehash()

        assert_equal(child_one_txid, child_two_txid)
        assert child_one_wtxid != child_two_wtxid

        self.log.info("Submit child_one to the mempool")
        txid_submitted = node.sendrawtransaction(child_one.serialize().hex())
        assert_equal(
            node.getrawmempool(True)[txid_submitted]['wtxid'], child_one_wtxid)

        peer_wtxid_relay.wait_for_broadcast([child_one_wtxid])
        assert_equal(node.getmempoolinfo()["unbroadcastcount"], 0)

        # testmempoolaccept reports the "already in mempool" error
        assert_equal(node.testmempoolaccept([child_one.serialize().hex()]),
                     [{
                         "txid": child_one_txid,
                         "wtxid": child_one_wtxid,
                         "allowed": False,
                         "reject-reason": "txn-already-in-mempool"
                     }])
        assert_equal(
            node.testmempoolaccept([child_two.serialize().hex()])[0], {
                "txid": child_two_txid,
                "wtxid": child_two_wtxid,
                "allowed": False,
                "reject-reason": "txn-same-nonwitness-data-in-mempool"
            })

        # sendrawtransaction will not throw but quits early when the exact same transaction is already in mempool
        node.sendrawtransaction(child_one.serialize().hex())

        self.log.info("Connect another peer that hasn't seen child_one before")
        peer_wtxid_relay_2 = node.add_p2p_connection(P2PTxInvStore())

        self.log.info("Submit child_two to the mempool")
        # sendrawtransaction will not throw but quits early when a transaction with the same non-witness data is already in mempool
        node.sendrawtransaction(child_two.serialize().hex())

        # The node should rebroadcast the transaction using the wtxid of the correct transaction
        # (child_one, which is in its mempool).
        peer_wtxid_relay_2.wait_for_broadcast([child_one_wtxid])
        assert_equal(node.getmempoolinfo()["unbroadcastcount"], 0)
Example #3
0
    def run_test(self):
        # Mine some blocks and have them mature.
        peer_inv_store = self.nodes[0].add_p2p_connection(
            P2PTxInvStore())  # keep track of invs
        self.nodes[0].generate(101)
        utxo = self.nodes[0].listunspent(10)
        txid = utxo[0]['txid']
        vout = utxo[0]['vout']
        value = utxo[0]['amount']

        fee = Decimal("0.0001")
        # MAX_ANCESTORS transactions off a confirmed tx should be fine
        chain = []
        witness_chain = []
        for _ in range(MAX_ANCESTORS):
            (txid,
             sent_value) = self.chain_transaction(self.nodes[0], txid, 0,
                                                  value, fee, 1)
            value = sent_value
            chain.append(txid)
            # We need the wtxids to check P2P announcements
            fulltx = self.nodes[0].getrawtransaction(txid)
            witnesstx = self.nodes[0].decoderawtransaction(fulltx, True)
            witness_chain.append(witnesstx['hash'])

        # Wait until mempool transactions have passed initial broadcast (sent inv and received getdata)
        # Otherwise, getrawmempool may be inconsistent with getmempoolentry if unbroadcast changes in between
        peer_inv_store.wait_for_broadcast(witness_chain)

        # Check mempool has MAX_ANCESTORS transactions in it, and descendant and ancestor
        # count and fees should look correct
        mempool = self.nodes[0].getrawmempool(True)
        assert_equal(len(mempool), MAX_ANCESTORS)
        descendant_count = 1
        descendant_fees = 0
        descendant_vsize = 0

        ancestor_vsize = sum([mempool[tx]['vsize'] for tx in mempool])
        ancestor_count = MAX_ANCESTORS
        ancestor_fees = sum([mempool[tx]['fee'] for tx in mempool])

        descendants = []
        ancestors = list(chain)
        for x in reversed(chain):
            # Check that getmempoolentry is consistent with getrawmempool
            entry = self.nodes[0].getmempoolentry(x)
            assert_equal(entry, mempool[x])

            # Check that the descendant calculations are correct
            assert_equal(mempool[x]['descendantcount'], descendant_count)
            descendant_fees += mempool[x]['fee']
            assert_equal(mempool[x]['modifiedfee'], mempool[x]['fee'])
            assert_equal(mempool[x]['fees']['base'], mempool[x]['fee'])
            assert_equal(mempool[x]['fees']['modified'],
                         mempool[x]['modifiedfee'])
            assert_equal(mempool[x]['descendantfees'], descendant_fees * COIN)
            assert_equal(mempool[x]['fees']['descendant'], descendant_fees)
            descendant_vsize += mempool[x]['vsize']
            assert_equal(mempool[x]['descendantsize'], descendant_vsize)
            descendant_count += 1

            # Check that ancestor calculations are correct
            assert_equal(mempool[x]['ancestorcount'], ancestor_count)
            assert_equal(mempool[x]['ancestorfees'], ancestor_fees * COIN)
            assert_equal(mempool[x]['ancestorsize'], ancestor_vsize)
            ancestor_vsize -= mempool[x]['vsize']
            ancestor_fees -= mempool[x]['fee']
            ancestor_count -= 1

            # Check that parent/child list is correct
            assert_equal(mempool[x]['spentby'], descendants[-1:])
            assert_equal(mempool[x]['depends'], ancestors[-2:-1])

            # Check that getmempooldescendants is correct
            assert_equal(sorted(descendants),
                         sorted(self.nodes[0].getmempooldescendants(x)))

            # Check getmempooldescendants verbose output is correct
            for descendant, dinfo in self.nodes[0].getmempooldescendants(
                    x, True).items():
                assert_equal(dinfo['depends'],
                             [chain[chain.index(descendant) - 1]])
                if dinfo['descendantcount'] > 1:
                    assert_equal(dinfo['spentby'],
                                 [chain[chain.index(descendant) + 1]])
                else:
                    assert_equal(dinfo['spentby'], [])
            descendants.append(x)

            # Check that getmempoolancestors is correct
            ancestors.remove(x)
            assert_equal(sorted(ancestors),
                         sorted(self.nodes[0].getmempoolancestors(x)))

            # Check that getmempoolancestors verbose output is correct
            for ancestor, ainfo in self.nodes[0].getmempoolancestors(
                    x, True).items():
                assert_equal(ainfo['spentby'],
                             [chain[chain.index(ancestor) + 1]])
                if ainfo['ancestorcount'] > 1:
                    assert_equal(ainfo['depends'],
                                 [chain[chain.index(ancestor) - 1]])
                else:
                    assert_equal(ainfo['depends'], [])

        # Check that getmempoolancestors/getmempooldescendants correctly handle verbose=true
        v_ancestors = self.nodes[0].getmempoolancestors(chain[-1], True)
        assert_equal(len(v_ancestors), len(chain) - 1)
        for x in v_ancestors.keys():
            assert_equal(mempool[x], v_ancestors[x])
        assert chain[-1] not in v_ancestors.keys()

        v_descendants = self.nodes[0].getmempooldescendants(chain[0], True)
        assert_equal(len(v_descendants), len(chain) - 1)
        for x in v_descendants.keys():
            assert_equal(mempool[x], v_descendants[x])
        assert chain[0] not in v_descendants.keys()

        # Check that ancestor modified fees includes fee deltas from
        # prioritisetransaction
        self.nodes[0].prioritisetransaction(txid=chain[0], fee_delta=1000)
        mempool = self.nodes[0].getrawmempool(True)
        ancestor_fees = 0
        for x in chain:
            ancestor_fees += mempool[x]['fee']
            assert_equal(mempool[x]['fees']['ancestor'],
                         ancestor_fees + Decimal('0.00001'))
            assert_equal(mempool[x]['ancestorfees'],
                         ancestor_fees * COIN + 1000)

        # Undo the prioritisetransaction for later tests
        self.nodes[0].prioritisetransaction(txid=chain[0], fee_delta=-1000)

        # Check that descendant modified fees includes fee deltas from
        # prioritisetransaction
        self.nodes[0].prioritisetransaction(txid=chain[-1], fee_delta=1000)
        mempool = self.nodes[0].getrawmempool(True)

        descendant_fees = 0
        for x in reversed(chain):
            descendant_fees += mempool[x]['fee']
            assert_equal(mempool[x]['fees']['descendant'],
                         descendant_fees + Decimal('0.00001'))
            assert_equal(mempool[x]['descendantfees'],
                         descendant_fees * COIN + 1000)

        # Adding one more transaction on to the chain should fail.
        assert_raises_rpc_error(-26, "too-long-mempool-chain",
                                self.chain_transaction, self.nodes[0], txid,
                                vout, value, fee, 1)

        # Check that prioritising a tx before it's added to the mempool works
        # First clear the mempool by mining a block.
        self.nodes[0].generate(1)
        self.sync_blocks()
        assert_equal(len(self.nodes[0].getrawmempool()), 0)
        # Prioritise a transaction that has been mined, then add it back to the
        # mempool by using invalidateblock.
        self.nodes[0].prioritisetransaction(txid=chain[-1], fee_delta=2000)
        self.nodes[0].invalidateblock(self.nodes[0].getbestblockhash())
        # Keep node1's tip synced with node0
        self.nodes[1].invalidateblock(self.nodes[1].getbestblockhash())

        # Now check that the transaction is in the mempool, with the right modified fee
        mempool = self.nodes[0].getrawmempool(True)

        descendant_fees = 0
        for x in reversed(chain):
            descendant_fees += mempool[x]['fee']
            if (x == chain[-1]):
                assert_equal(mempool[x]['modifiedfee'],
                             mempool[x]['fee'] + satoshi_round(0.00002))
                assert_equal(mempool[x]['fees']['modified'],
                             mempool[x]['fee'] + satoshi_round(0.00002))
            assert_equal(mempool[x]['descendantfees'],
                         descendant_fees * COIN + 2000)
            assert_equal(mempool[x]['fees']['descendant'],
                         descendant_fees + satoshi_round(0.00002))

        # Check that node1's mempool is as expected (-> custom ancestor limit)
        mempool0 = self.nodes[0].getrawmempool(False)
        mempool1 = self.nodes[1].getrawmempool(False)
        assert_equal(len(mempool1), MAX_ANCESTORS_CUSTOM)
        assert set(mempool1).issubset(set(mempool0))
        for tx in chain[:MAX_ANCESTORS_CUSTOM]:
            assert tx in mempool1
        # TODO: more detailed check of node1's mempool (fees etc.)
        # check transaction unbroadcast info (should be false if in both mempools)
        mempool = self.nodes[0].getrawmempool(True)
        for tx in mempool:
            assert_equal(mempool[tx]['unbroadcast'], False)

        # TODO: test ancestor size limits

        # Now test descendant chain limits
        txid = utxo[1]['txid']
        value = utxo[1]['amount']
        vout = utxo[1]['vout']

        transaction_package = []
        tx_children = []
        # First create one parent tx with 10 children
        (txid, sent_value) = self.chain_transaction(self.nodes[0], txid, vout,
                                                    value, fee, 10)
        parent_transaction = txid
        for i in range(10):
            transaction_package.append({
                'txid': txid,
                'vout': i,
                'amount': sent_value
            })

        # Sign and send up to MAX_DESCENDANT transactions chained off the parent tx
        chain = [
        ]  # save sent txs for the purpose of checking node1's mempool later (see below)
        for _ in range(MAX_DESCENDANTS - 1):
            utxo = transaction_package.pop(0)
            (txid,
             sent_value) = self.chain_transaction(self.nodes[0], utxo['txid'],
                                                  utxo['vout'], utxo['amount'],
                                                  fee, 10)
            chain.append(txid)
            if utxo['txid'] is parent_transaction:
                tx_children.append(txid)
            for j in range(10):
                transaction_package.append({
                    'txid': txid,
                    'vout': j,
                    'amount': sent_value
                })

        mempool = self.nodes[0].getrawmempool(True)
        assert_equal(mempool[parent_transaction]['descendantcount'],
                     MAX_DESCENDANTS)
        assert_equal(sorted(mempool[parent_transaction]['spentby']),
                     sorted(tx_children))

        for child in tx_children:
            assert_equal(mempool[child]['depends'], [parent_transaction])

        # Sending one more chained transaction will fail
        utxo = transaction_package.pop(0)
        assert_raises_rpc_error(-26, "too-long-mempool-chain",
                                self.chain_transaction, self.nodes[0],
                                utxo['txid'], utxo['vout'], utxo['amount'],
                                fee, 10)

        # Check that node1's mempool is as expected, containing:
        # - txs from previous ancestor test (-> custom ancestor limit)
        # - parent tx for descendant test
        # - txs chained off parent tx (-> custom descendant limit)
        self.wait_until(lambda: len(self.nodes[1].getrawmempool(False)) ==
                        MAX_ANCESTORS_CUSTOM + 1 + MAX_DESCENDANTS_CUSTOM,
                        timeout=10)
        mempool0 = self.nodes[0].getrawmempool(False)
        mempool1 = self.nodes[1].getrawmempool(False)
        assert set(mempool1).issubset(set(mempool0))
        assert parent_transaction in mempool1
        for tx in chain[:MAX_DESCENDANTS_CUSTOM]:
            assert tx in mempool1
        for tx in chain[MAX_DESCENDANTS_CUSTOM:]:
            assert tx not in mempool1
        # TODO: more detailed check of node1's mempool (fees etc.)

        # TODO: test descendant size limits

        # Test reorg handling
        # First, the basics:
        self.nodes[0].generate(1)
        self.sync_blocks()
        self.nodes[1].invalidateblock(self.nodes[0].getbestblockhash())
        self.nodes[1].reconsiderblock(self.nodes[0].getbestblockhash())

        # Now test the case where node1 has a transaction T in its mempool that
        # depends on transactions A and B which are in a mined block, and the
        # block containing A and B is disconnected, AND B is not accepted back
        # into node1's mempool because its ancestor count is too high.

        # Create 8 transactions, like so:
        # Tx0 -> Tx1 (vout0)
        #   \--> Tx2 (vout1) -> Tx3 -> Tx4 -> Tx5 -> Tx6 -> Tx7
        #
        # Mine them in the next block, then generate a new tx8 that spends
        # Tx1 and Tx7, and add to node1's mempool, then disconnect the
        # last block.

        # Create tx0 with 2 outputs
        utxo = self.nodes[0].listunspent()
        txid = utxo[0]['txid']
        value = utxo[0]['amount']
        vout = utxo[0]['vout']

        send_value = satoshi_round((value - fee) / 2)
        inputs = [{'txid': txid, 'vout': vout}]
        outputs = {}
        for _ in range(2):
            outputs[self.nodes[0].getnewaddress()] = send_value
        rawtx = self.nodes[0].createrawtransaction(inputs, outputs)
        signedtx = self.nodes[0].signrawtransactionwithwallet(rawtx)
        txid = self.nodes[0].sendrawtransaction(signedtx['hex'])
        tx0_id = txid
        value = send_value

        # Create tx1
        tx1_id, _ = self.chain_transaction(self.nodes[0], tx0_id, 0, value,
                                           fee, 1)

        # Create tx2-7
        vout = 1
        txid = tx0_id
        for _ in range(6):
            (txid,
             sent_value) = self.chain_transaction(self.nodes[0], txid, vout,
                                                  value, fee, 1)
            vout = 0
            value = sent_value

        # Mine these in a block
        self.nodes[0].generate(1)
        self.sync_all()

        # Now generate tx8, with a big fee
        inputs = [{'txid': tx1_id, 'vout': 0}, {'txid': txid, 'vout': 0}]
        outputs = {self.nodes[0].getnewaddress(): send_value + value - 4 * fee}
        rawtx = self.nodes[0].createrawtransaction(inputs, outputs)
        signedtx = self.nodes[0].signrawtransactionwithwallet(rawtx)
        txid = self.nodes[0].sendrawtransaction(signedtx['hex'])
        self.sync_mempools()

        # Now try to disconnect the tip on each node...
        self.nodes[1].invalidateblock(self.nodes[1].getbestblockhash())
        self.nodes[0].invalidateblock(self.nodes[0].getbestblockhash())
        self.sync_blocks()
Example #4
0
    def test_broadcast(self):
        self.log.info("Test that mempool reattempts delivery of locally submitted transaction")
        node = self.nodes[0]

        self.disconnect_nodes(0, 1)

        self.log.info("Generate transactions that only node 0 knows about")

        if self.is_wallet_compiled():
            # generate a wallet txn
            addr = node.getnewaddress()
            wallet_tx_hsh = node.sendtoaddress(addr, 0.0001)

        # generate a txn using sendrawtransaction
        txFS = self.wallet.create_self_transfer()
        rpc_tx_hsh = node.sendrawtransaction(txFS["hex"])

        # check transactions are in unbroadcast using rpc
        mempoolinfo = self.nodes[0].getmempoolinfo()
        unbroadcast_count = 1
        if self.is_wallet_compiled():
            unbroadcast_count += 1
        assert_equal(mempoolinfo['unbroadcastcount'], unbroadcast_count)
        mempool = self.nodes[0].getrawmempool(True)
        for tx in mempool:
            assert_equal(mempool[tx]['unbroadcast'], True)

        # check that second node doesn't have these two txns
        mempool = self.nodes[1].getrawmempool()
        assert rpc_tx_hsh not in mempool
        if self.is_wallet_compiled():
            assert wallet_tx_hsh not in mempool

        # ensure that unbroadcast txs are persisted to mempool.dat
        self.restart_node(0)

        self.log.info("Reconnect nodes & check if they are sent to node 1")
        self.connect_nodes(0, 1)

        # fast forward into the future & ensure that the second node has the txns
        node.mockscheduler(MAX_INITIAL_BROADCAST_DELAY)
        self.sync_mempools(timeout=30)
        mempool = self.nodes[1].getrawmempool()
        assert rpc_tx_hsh in mempool
        if self.is_wallet_compiled():
            assert wallet_tx_hsh in mempool

        # check that transactions are no longer in first node's unbroadcast set
        mempool = self.nodes[0].getrawmempool(True)
        for tx in mempool:
            assert_equal(mempool[tx]['unbroadcast'], False)

        self.log.info("Add another connection & ensure transactions aren't broadcast again")

        conn = node.add_p2p_connection(P2PTxInvStore())
        node.mockscheduler(MAX_INITIAL_BROADCAST_DELAY)
        time.sleep(2) # allow sufficient time for possibility of broadcast
        assert_equal(len(conn.get_invs()), 0)

        self.disconnect_nodes(0, 1)
        node.disconnect_p2ps()

        self.log.info("Rebroadcast transaction and ensure it is not added to unbroadcast set when already in mempool")
        rpc_tx_hsh = node.sendrawtransaction(txFS["hex"])
        assert not node.getmempoolentry(rpc_tx_hsh)['unbroadcast']