def _test_external_source_callback_torch_stream(src_device, gen_device):
    with torch.cuda.stream(torch.cuda.Stream()):
        for attempt in range(10):
            t0 = torch.tensor([attempt * 100 + 1.5],
                              dtype=torch.float32,
                              device=gen_device)
            increment = torch.tensor([10],
                                     dtype=torch.float32,
                                     device=gen_device)
            pipe = Pipeline(1, 3, 0)

            def gen_batch():
                nonlocal t0
                t0 += increment
                return [to_dlpack(t0)]

            pipe.set_outputs(
                fn.external_source(source=gen_batch,
                                   device=src_device,
                                   cuda_stream=torch.cuda.current_stream()))
            pipe.build()

            for i in range(10):
                check_output(pipe.run(), [
                    np.array([attempt * 100 + (i + 1) * 10 + 1.5],
                             dtype=np.float32)
                ])
Example #2
0
def test_external_source_collection_cycling_raise():
    pipe = Pipeline(1, 3, 0, prefetch_queue_depth=1)

    batches = [[make_array([1.5, 2.5], dtype=datapy.float32)],
               [make_array([-1, 3.5, 4.5], dtype=datapy.float32)]]

    def batch_gen():
        for b in batches:
            yield b

    pipe.set_outputs(fn.external_source(batches, cycle="raise"),
                     fn.external_source(batch_gen, cycle="raise"))
    pipe.build()

    # epochs are cycles over the source iterable
    for _ in range(3):
        for batch in batches:
            pipe_out = pipe.run()
            batch = asnumpy(batch)
            batch = batch, batch
            check_output(pipe_out, batch)

        with assert_raises(StopIteration):
            pipe.run()
        pipe.reset()
def test_external_source_with_iter():
    pipe = Pipeline(1, 3, 0)

    pipe.set_outputs(fn.external_source(lambda i: [np.array([i + 1.5], dtype=np.float32)]))
    pipe.build()

    for i in range(10):
        check_output(pipe.run(), [np.array([i + 1.5], dtype=np.float32)])
Example #4
0
def test_external_source_with_iter():
    for attempt in range(10):
        pipe = Pipeline(1, 3, 0)

        pipe.set_outputs(fn.external_source(lambda i: [make_array([attempt * 100 + i * 10 + 1.5], dtype=datapy.float32)]))
        pipe.build()

        for i in range(10):
            check_output(pipe.run(), [np.array([attempt * 100 + i * 10 + 1.5], dtype=np.float32)])
Example #5
0
def run_and_check(pipe, ref_iterable):
    iter_ref = iter(ref_iterable)
    i = 0
    while True:
        try:
            pipe_out = pipe.run()
            check_output(pipe_out, next(iter_ref))
            i += 1
        except StopIteration:
            break
    assert (i == len(ref_iterable))
Example #6
0
def test_external_source_generator():
    pipe = Pipeline(1, 3, 0)

    def gen():
        for i in range(5):
            yield [make_array([i + 1.5], dtype=datapy.float32)]

    pipe.set_outputs(fn.external_source(gen()))
    pipe.build()

    for i in range(5):
        check_output(pipe.run(), [np.array([i + 1.5], dtype=np.float32)])
Example #7
0
def run_and_check(pipe, ref_iterable):
    iter_ref = iter(ref_iterable)
    i = 0
    while True:
        try:
            pipe_out = pipe.run()
            data = next(iter_ref)
            data = asnumpy(data, iter_ref.device )
            check_output(pipe_out, data)
            i += 1
        except StopIteration:
            break
    assert(i == len(ref_iterable))
Example #8
0
def test_external_source_gen_function_cycle():
    pipe = Pipeline(1, 3, 0)

    def gen():
        for i in range(5):
            yield [make_array([i + 1.5], dtype=datapy.float32)]

    pipe.set_outputs(fn.external_source(gen, cycle=True))
    pipe.build()

    for _ in range(3):
        for i in range(5):
            check_output(pipe.run(), [np.array([i + 1.5], dtype=np.float32)])
Example #9
0
def test_external_source_collection_cycling():
    pipe = Pipeline(1, 3, 0)

    batches = [[np.array([1.5, 2.5], dtype=np.float32)],
               [np.array([-1, 3.5, 4.5], dtype=np.float32)]]

    pipe.set_outputs(fn.external_source(batches, cycle=True))
    pipe.build()

    # epochs are cycles over the source iterable
    for epoch in range(3):
        for batch in batches:
            check_output(pipe.run(), batch)
def test_external_source_with_sample_info():
    batch_size = 7
    for attempt in range(10):
        pipe = Pipeline(batch_size, 3, 0)

        def src(si):
            assert(si.idx_in_epoch == batch_size * si.iteration + si.idx_in_batch)
            return make_array([attempt * 100 + si.iteration * 10 + si.idx_in_batch + 1.5], dtype=datapy.float32)

        pipe.set_outputs(fn.external_source(src, batch=False))
        pipe.build()

        for i in range(10):
            batch = [np.array([attempt * 100 + i * 10 + s + 1.5], dtype=np.float32) for s in range(batch_size)]
            check_output(pipe.run(), batch)
def test_external_source_with_iter_cupy_stream():
    with cp.cuda.Stream(non_blocking=True):
        for attempt in range(10):
            pipe = Pipeline(1, 3, 0)

            def get_data(i):
                return [
                    cp.array([attempt * 100 + i * 10 + 1.5], dtype=cp.float32)
                ]

            pipe.set_outputs(fn.external_source(get_data))
            pipe.build()

            for i in range(10):
                check_output(pipe.run(), [
                    np.array([attempt * 100 + i * 10 + 1.5], dtype=np.float32)
                ])
Example #12
0
def test_external_source_callback_torch_stream():
    with torch.cuda.stream(torch.cuda.Stream()):
        for attempt in range(10):
            t0 = torch.tensor([attempt * 100 + 1.5],
                              dtype=torch.float32).cuda()
            increment = torch.tensor([10], dtype=torch.float32).cuda()
            pipe = Pipeline(1, 3, 0)

            def gen_batch():
                nonlocal t0
                t0 += increment
                return [t0]

            pipe.set_outputs(fn.external_source(gen_batch))
            pipe.build()

            for i in range(10):
                check_output(pipe.run(), [
                    np.array([attempt * 100 + (i + 1) * 10 + 1.5],
                             dtype=np.float32)
                ])