for c in classes: idxs = np.flatnonzero(y == c) idxs = RNG(seed=1337).choice(idxs, samples_per_class, replace=False) for i, idx in enumerate(idxs): plt_idx = i * num_classes + c + 1 ax = plt.subplot(samples_per_class, num_classes, plt_idx) ax.spines['bottom'].set_linewidth(2.) ax.spines['top'].set_linewidth(2.) ax.spines['left'].set_linewidth(2.) ax.spines['right'].set_linewidth(2.) plt.tick_params(axis='both', which='both', bottom='off', top='off', left='off', right='off', labelbottom='off', labelleft='off', labelright='off') plt.imshow(X[idx].astype('uint8'), **imshow_params) if i == 0: plt.title(get_cifar10_label(c)) plt.suptitle(title, **title_params) plt.subplots_adjust(wspace=0, hspace=0) if __name__ == '__main__': # run corresponding tests from testing import run_tests run_tests(__file__)
lambda: sssp_test(bellman_ford, with_weight_w(nx.circular_ladder_graph(4), 2.0), 0), # 9 lambda: sssp_test(bellman_ford, with_weight_w(nx.circular_ladder_graph(6), 2.0), 0 ), # 10 lambda: sssp_test(bellman_ford, G_negative_edges, 0), # 11 lambda: sssp_test(dial, with_weight_w(nx.path_graph(10)), 0), # 12 lambda: sssp_test(dial, with_weight_w(nx.star_graph(10), 2.0), 0), # 13 lambda: sssp_test(dial, with_weight_w(nx.complete_graph(10)), 0), # 14 lambda: sssp_test(dial, with_weight_w(nx.circular_ladder_graph(20), 2.0), 0 ), # 15 lambda: sssp_test(dial, G_spt_different_weights, 0), # 16 lambda: sssp_test(delta_stepping, with_weight_w(nx.path_graph(10)), 0 ), # 17 lambda: sssp_test(delta_stepping, with_weight_w(nx.star_graph(10), 2.0), 0 ), # 18 lambda: sssp_test(delta_stepping, with_weight_w(nx.complete_graph(10)), 0 ), # 19 lambda: sssp_test(delta_stepping, with_weight_w(nx.circular_ladder_graph(20), 2.0), 0 ), # 20 lambda: sssp_test(delta_stepping, G_spt_different_weights, 0), # 21 lambda: sssp_test(delta_stepping, G_disconnected_graph, 0), # 22 lambda: sssp_test(dial, G_disconnected_graph, 0), # 23 lambda: sssp_test(bellman_ford, G_disconnected_graph, 0), # 24 lambda: sssp_test(dijkstra, G_disconnected_graph, 0), # 25 ] if __name__ == "__main__": run_tests(tests)
while remaining != '': doc = remaining[:50] remaining = remaining[50:] to_send.append(doc) while to_send: docpart = to_send.popleft() b_complete = 0 if not to_send: b_complete = 1 # payload = gruel_press.create_docdata_payload(b_complete=b_complete, data=docpart) # cs_tcp_recv = cs.CsTcpRecv() cs_tcp_recv.engine = engine cs_tcp_recv.client_sid = 'fake_sid' cs_tcp_recv.data = payload prop_gruel_client._engine_on_tcp_recv(cs_tcp_recv=cs_tcp_recv) server_sends_large_doc() # # confirm effects assert len(doc_receiver.docs) > docs_received assert doc_receiver.docs[-1] == large_doc # return True if __name__ == '__main__': run_tests(unders_file=sys.modules['__main__'].__file__)
spt_actual = impl(G) # all vertices in SPT vertices_present_msg = {True: "all_present", False: "vertex_missing"} vp_test_result = (len(spt_actual.nodes()) == len(G.nodes())) and (set(spt_actual.nodes()) == set(G.nodes())) # summary cost equal to one returned by NetworkX cost_equal_msg = {True: "cost_equal", False: "cost_different"} calc_cost = lambda G: reduce(lambda a,b: a+b, map(lambda (u, v): G[u][v]["weight"], G.edges())) ce_test_result = calc_cost(spt_actual) == calc_cost(nx.minimum_spanning_tree(G)) # edges in SPT should be subset of edges in G edges_subset_msg = {True: "edge_subset", False: "additional_edges"} edges_without_data = lambda G: map(lambda t: t[0:2], G.edges()) # this is needed because for undirected graphs NetworkX has edges only in one direction edges_without_data_G = edges_without_data(G) edges_both_dirs_G = edges_without_data_G + map(lambda t: tuple(reversed(t)), edges_without_data_G) es_test_result = set(edges_without_data(spt_actual)) <= set(edges_both_dirs_G) result_str_repr = lambda vp, ce, es: vertices_present_msg[vp] + "_" + cost_equal_msg[ce] + "_" + edges_subset_msg[es] return result_str_repr(vp_test_result, ce_test_result, es_test_result), result_str_repr(True, True, True) tests = [ lambda: spt_func_test(kruscal, with_weight_w(nx.complete_graph(10), 2.0)), lambda: spt_func_test(kruscal, G_spt_different_weights), ] if __name__ == "__main__": run_tests(tests)
def run_from_argv(self, argv): import nose2 with run_tests(): nose2.main(module=None, argv=argv[1:])
def run_from_argv(self, argv): import nose with run_tests(): nose.main(argv[2:])
def run_from_argv(self, argv): import pytest with run_tests(): pytest.main(argv[2:])