def bypass():
    do_plot = True  # Whether to plot results
    n_seeds = 6  # Number of seeds to run each simulation with
    rand_seed = 1  # Overwrite the default random seed
    bypass_popfile = 'trans_r0_medium.ppl'
    pop_size = int(100e3)

    entry = {
        "index": 376.0,
        "mismatch": 0.03221581045452142,
        "pars": {
            "pop_infected": 0,
            "change_beta": 0.5313884845187986,
            "symp_prob": 0.08250498122080606
        }
    }

    params = sc.dcp(entry['pars'])
    if rand_seed is None:
        params['rand_seed'] = int(entry['index'])
    else:
        params['rand_seed'] = rand_seed

    # Ensure the population file exists
    if not os.path.exists(bypass_popfile):
        print(f'Population file {bypass_popfile} not found, recreating...')
        cvsch.make_population(pop_size=pop_size,
                              rand_seed=params['rand_seed'],
                              max_pop_seeds=5,
                              popfile=bypass_popfile,
                              do_save=True)

    scen = generate_scenarios()['as_normal']

    # Create the sim
    people = sc.loadobj(bypass_popfile)
    base_sim = cs.create_sim(params,
                             pop_size=pop_size,
                             load_pop=False,
                             people=people,
                             verbose=0.1)

    # Run the sims
    sims = []
    for seed in range(n_seeds):
        sim = sc.dcp(base_sim)
        sim.set_seed(seed=sim['rand_seed'] + seed)
        sim.label = f'Sim {seed}'
        sim['interventions'] += [cvsch.schools_manager(scen), seed_schools()]
        sim['beta_layer'] = dict(
            h=0.0, s=0.0, w=0.0, c=0.0, l=0.0
        )  # Turn off transmission in other layers, looking for in-school R0
        sims.append(sim)
    msim = cv.MultiSim(sims)
    msim.run(keep_people=True)

    return msim
def longway():
    pop_size = 2.25e5
    calibfile = os.path.join(
        folder,
        'pars_cases_begin=75_cases_end=75_re=1.0_prevalence=0.002_yield=0.024_tests=225_pop_size=225000.json'
    )
    par_list = sc.loadjson(calibfile)[par_inds[0]:par_inds[1]]
    scen = generate_scenarios()['as_normal']

    for stype, cfg in scen.items():
        if cfg:
            cfg['start_day'] = '2020-09-07'  # Move school start earlier

    # Configure and run the sims
    sims = []
    for eidx, entry in enumerate(par_list):
        par = sc.dcp(entry['pars'])
        par['rand_seed'] = int(entry['index'])

        # Clunky, but check that the population exists
        pop_seed = par['rand_seed'] % 5
        popfile = os.path.join(
            folder, 'inputs',
            f'kc_synthpops_clustered_{int(pop_size)}_withstaff_seed') + str(
                pop_seed) + '.ppl'
        if not os.path.exists(popfile):
            print(f'Population file {popfile} not found, recreating...')
            cvsch.make_population(pop_size=pop_size,
                                  rand_seed=par['rand_seed'],
                                  max_pop_seeds=5,
                                  popfile=popfile,
                                  do_save=True)

        par['pop_infected'] = 0  # Do NOT seed infections
        par['beta_layer'] = dict(
            h=0.0, s=0.0, w=0.0, c=0.0, l=0.0
        )  # Turn off transmission in other layers, looking for in-school R0
        sim = cs.create_sim(par, pop_size=pop_size, folder=folder)

        delay = sim.day('2020-09-16')  # Pick a Monday
        sim['interventions'] += [
            cvsch.schools_manager(scen),
            seed_schools(delay=delay, n_infections=1, choose_students=False)
        ]
        sims.append(sim)

    msim = cv.MultiSim(sims)
    msim.run(keep_people=True)

    return msim
Example #3
0
    # Modify scen
    for stype, spec in scen.items():
        if spec is not None:
            spec['screen_prob'] = 0
    return scen

def no_tracing(sim, scen, test):
    # Modify scen
    for stype, spec in scen.items():
        if spec is not None:
            spec['trace_prob'] = 0
    return scen


if __name__ == '__main__':
    scenarios = t_s.generate_scenarios()
    #scenarios = {k:v for k,v in scenarios.items() if k in ['with_countermeasures', 'all_hybrid', 'k5', 'all_remote']}
    scenarios = {k:v for k,v in scenarios.items() if k in ['with_countermeasures']}

    testing = t_s.generate_testing()
    #testing = {k:v for k,v in testing.items() if k in ['None', 'PCR every 2w', 'Antigen every 1w teach&staff, PCR f/u', 'Antigen every 2w, PCR f/u']}
    testing = {k:v for k,v in testing.items() if k in ['None', 'Antigen every 2w, PCR f/u']}

    sensitivity = {
        # Baseline
        'baseline': [baseline],

        # For K-5 in particular, masks could be challenging - what if we remove the 25% NPI boost?
        # --> Change beta in the scenario
        'NPI': [baseline, no_NPI_reduction],
Example #4
0
                other_edges = edges_this_school.loc[
                    (~edges_this_school['p1_student']) |
                    (~edges_this_school['p2_student'])]
                rewired_edges_this_school = pd.concat(
                    [rewired_student_to_student_edges, other_edges])
                school_contacts.append(rewired_edges_this_school)

    all_school_contacts = pd.concat(school_contacts)
    sim.people.contacts['s'] = cv.Layer().from_df(all_school_contacts)

    sm = cvsch.schools_manager(scen)
    sim['interventions'] += [sm]


if __name__ == '__main__':
    scenarios = generate_scenarios()
    #scenarios = {k:v for k,v in scenarios.items() if k in ['with_countermeasures', 'all_hybrid', 'k5', 'all_remote']}
    scenarios = {k: v for k, v in scenarios.items() if k in ['k5']}

    testing = generate_testing()
    testing = {
        k: v
        for k, v in testing.items() if k in [
            'None',
            'PCR every 2w',
            #'Antigen every 2w, PCR f/u',
            'Antigen every 2w, no f/u',
            'Antigen every 1w, PCR f/u',
            #'Antigen every 1w teach&staff, PCR f/u',
        ]
    }