Example #1
0
def test_partial() -> None:
    """
    Add another table to existing repo using partial apply API. Make sure both the table
    applied via CLI apply and the new table are passing RW test.
    """

    runner = CliRunner()
    with runner.local_repo(get_example_repo("example_feature_repo_1.py"),
                           "bigquery") as store:

        driver_locations_source = BigQuerySource(
            table_ref="rh_prod.ride_hailing_co.drivers",
            event_timestamp_column="event_timestamp",
            created_timestamp_column="created_timestamp",
        )

        driver_locations_100 = FeatureView(
            name="driver_locations_100",
            entities=["driver"],
            ttl=Duration(seconds=86400 * 1),
            features=[
                Feature(name="lat", dtype=ValueType.FLOAT),
                Feature(name="lon", dtype=ValueType.STRING),
                Feature(name="name", dtype=ValueType.STRING),
            ],
            online=True,
            input=driver_locations_source,
            tags={},
        )

        store.apply([driver_locations_100])

        basic_rw_test(store, view_name="driver_locations")
        basic_rw_test(store, view_name="driver_locations_100")
Example #2
0
def test_e2e_local() -> None:
    """
    A more comprehensive than "basic" test, using local provider.

    1. Create a repo.
    2. Apply
    3. Ingest some data to online store from parquet
    4. Read from the online store to make sure it made it there.
    """

    runner = CliRunner()
    with tempfile.TemporaryDirectory() as data_dir:

        # Generate some test data in parquet format.
        end_date = datetime.now().replace(microsecond=0, second=0, minute=0)
        start_date = end_date - timedelta(days=15)

        driver_entities = [1001, 1002, 1003, 1004, 1005]
        driver_df = driver_data.create_driver_hourly_stats_df(
            driver_entities, start_date, end_date)

        driver_stats_path = os.path.join(data_dir, "driver_stats.parquet")
        driver_df.to_parquet(path=driver_stats_path,
                             allow_truncated_timestamps=True)

        # Note that runner takes care of running apply/teardown for us here.
        # We patch python code in example_feature_repo_2.py to set the path to Parquet files.
        with runner.local_repo(
                get_example_repo("example_feature_repo_2.py").replace(
                    "%PARQUET_PATH%", driver_stats_path),
                "file",
        ) as store:

            assert store.repo_path is not None

            # feast materialize
            r = runner.run(
                [
                    "materialize",
                    start_date.isoformat(),
                    (end_date - timedelta(days=7)).isoformat(),
                ],
                cwd=Path(store.repo_path),
            )

            assert r.returncode == 0

            _assert_online_features(store, driver_df,
                                    end_date - timedelta(days=7))

            # feast materialize-incremental
            r = runner.run(
                ["materialize-incremental",
                 end_date.isoformat()],
                cwd=Path(store.repo_path),
            )

            assert r.returncode == 0

            _assert_online_features(store, driver_df, end_date)
Example #3
0
def test_online() -> None:
    """
    Test reading from the online store in local mode.
    """
    runner = CliRunner()
    with runner.local_repo(
            get_example_repo("example_feature_repo_1.py")) as store:
        # Write some data to two tables

        driver_locations_fv = store.get_feature_view(name="driver_locations")
        customer_profile_fv = store.get_feature_view(name="customer_profile")
        customer_driver_combined_fv = store.get_feature_view(
            name="customer_driver_combined")

        provider = store._get_provider()

        driver_key = EntityKeyProto(join_keys=["driver"],
                                    entity_values=[ValueProto(int64_val=1)])
        provider.online_write_batch(
            project=store.config.project,
            table=driver_locations_fv,
            data=[(
                driver_key,
                {
                    "lat": ValueProto(double_val=0.1),
                    "lon": ValueProto(string_val="1.0"),
                },
                datetime.utcnow(),
                datetime.utcnow(),
            )],
            progress=None,
        )

        customer_key = EntityKeyProto(join_keys=["customer"],
                                      entity_values=[ValueProto(int64_val=5)])
        provider.online_write_batch(
            project=store.config.project,
            table=customer_profile_fv,
            data=[(
                customer_key,
                {
                    "avg_orders_day": ValueProto(float_val=1.0),
                    "name": ValueProto(string_val="John"),
                    "age": ValueProto(int64_val=3),
                },
                datetime.utcnow(),
                datetime.utcnow(),
            )],
            progress=None,
        )

        customer_key = EntityKeyProto(
            join_keys=["customer", "driver"],
            entity_values=[ValueProto(int64_val=5),
                           ValueProto(int64_val=1)],
        )
        provider.online_write_batch(
            project=store.config.project,
            table=customer_driver_combined_fv,
            data=[(
                customer_key,
                {
                    "trips": ValueProto(int64_val=7)
                },
                datetime.utcnow(),
                datetime.utcnow(),
            )],
            progress=None,
        )

        # Retrieve two features using two keys, one valid one non-existing
        result = store.get_online_features(
            feature_refs=[
                "driver_locations:lon",
                "customer_profile:avg_orders_day",
                "customer_profile:name",
                "customer_driver_combined:trips",
            ],
            entity_rows=[{
                "driver": 1,
                "customer": 5
            }, {
                "driver": 1,
                "customer": 5
            }],
        ).to_dict()

        assert "driver_locations__lon" in result
        assert "customer_profile__avg_orders_day" in result
        assert "customer_profile__name" in result
        assert result["driver"] == [1, 1]
        assert result["customer"] == [5, 5]
        assert result["driver_locations__lon"] == ["1.0", "1.0"]
        assert result["customer_profile__avg_orders_day"] == [1.0, 1.0]
        assert result["customer_profile__name"] == ["John", "John"]
        assert result["customer_driver_combined__trips"] == [7, 7]

        # Ensure features are still in result when keys not found
        result = store.get_online_features(
            feature_refs=["customer_driver_combined:trips"],
            entity_rows=[{
                "driver": 0,
                "customer": 0
            }],
        ).to_dict()

        assert "customer_driver_combined__trips" in result

        # invalid table reference
        with pytest.raises(FeatureViewNotFoundException):
            store.get_online_features(
                feature_refs=["driver_locations_bad:lon"],
                entity_rows=[{
                    "driver": 1
                }],
            )

        # Create new FeatureStore object with fast cache invalidation
        cache_ttl = 1
        fs_fast_ttl = FeatureStore(config=RepoConfig(
            registry=RegistryConfig(path=store.config.registry,
                                    cache_ttl_seconds=cache_ttl),
            online_store=store.config.online_store,
            project=store.config.project,
            provider=store.config.provider,
        ))

        # Should download the registry and cache it permanently (or until manually refreshed)
        result = fs_fast_ttl.get_online_features(
            feature_refs=[
                "driver_locations:lon",
                "customer_profile:avg_orders_day",
                "customer_profile:name",
                "customer_driver_combined:trips",
            ],
            entity_rows=[{
                "driver": 1,
                "customer": 5
            }],
        ).to_dict()
        assert result["driver_locations__lon"] == ["1.0"]
        assert result["customer_driver_combined__trips"] == [7]

        # Rename the registry.db so that it cant be used for refreshes
        os.rename(store.config.registry, store.config.registry + "_fake")

        # Wait for registry to expire
        time.sleep(cache_ttl)

        # Will try to reload registry because it has expired (it will fail because we deleted the actual registry file)
        with pytest.raises(FileNotFoundError):
            fs_fast_ttl.get_online_features(
                feature_refs=[
                    "driver_locations:lon",
                    "customer_profile:avg_orders_day",
                    "customer_profile:name",
                    "customer_driver_combined:trips",
                ],
                entity_rows=[{
                    "driver": 1,
                    "customer": 5
                }],
            ).to_dict()

        # Restore registry.db so that we can see if it actually reloads registry
        os.rename(store.config.registry + "_fake", store.config.registry)

        # Test if registry is actually reloaded and whether results return
        result = fs_fast_ttl.get_online_features(
            feature_refs=[
                "driver_locations:lon",
                "customer_profile:avg_orders_day",
                "customer_profile:name",
                "customer_driver_combined:trips",
            ],
            entity_rows=[{
                "driver": 1,
                "customer": 5
            }],
        ).to_dict()
        assert result["driver_locations__lon"] == ["1.0"]
        assert result["customer_driver_combined__trips"] == [7]

        # Create a registry with infinite cache (for users that want to manually refresh the registry)
        fs_infinite_ttl = FeatureStore(config=RepoConfig(
            registry=RegistryConfig(path=store.config.registry,
                                    cache_ttl_seconds=0),
            online_store=store.config.online_store,
            project=store.config.project,
            provider=store.config.provider,
        ))

        # Should return results (and fill the registry cache)
        result = fs_infinite_ttl.get_online_features(
            feature_refs=[
                "driver_locations:lon",
                "customer_profile:avg_orders_day",
                "customer_profile:name",
                "customer_driver_combined:trips",
            ],
            entity_rows=[{
                "driver": 1,
                "customer": 5
            }],
        ).to_dict()
        assert result["driver_locations__lon"] == ["1.0"]
        assert result["customer_driver_combined__trips"] == [7]

        # Wait a bit so that an arbitrary TTL would take effect
        time.sleep(2)

        # Rename the registry.db so that it cant be used for refreshes
        os.rename(store.config.registry, store.config.registry + "_fake")

        # TTL is infinite so this method should use registry cache
        result = fs_infinite_ttl.get_online_features(
            feature_refs=[
                "driver_locations:lon",
                "customer_profile:avg_orders_day",
                "customer_profile:name",
                "customer_driver_combined:trips",
            ],
            entity_rows=[{
                "driver": 1,
                "customer": 5
            }],
        ).to_dict()
        assert result["driver_locations__lon"] == ["1.0"]
        assert result["customer_driver_combined__trips"] == [7]

        # Force registry reload (should fail because file is missing)
        with pytest.raises(FileNotFoundError):
            fs_infinite_ttl.refresh_registry()

        # Restore registry.db so that teardown works
        os.rename(store.config.registry + "_fake", store.config.registry)
def test_online() -> None:
    """
    Test reading from the online store in local mode.
    """
    runner = CliRunner()
    with runner.local_repo(get_example_repo("example_feature_repo_1.py")) as store:

        # Write some data to two tables
        registry = store._get_registry()
        table = registry.get_feature_view(
            project=store.config.project, name="driver_locations"
        )
        table_2 = registry.get_feature_view(
            project=store.config.project, name="driver_locations_2"
        )

        provider = store._get_provider()

        entity_key = EntityKeyProto(
            entity_names=["driver"], entity_values=[ValueProto(int64_val=1)]
        )
        provider.online_write_batch(
            project=store.config.project,
            table=table,
            data=[
                (
                    entity_key,
                    {
                        "lat": ValueProto(double_val=0.1),
                        "lon": ValueProto(string_val="1.0"),
                    },
                    datetime.utcnow(),
                    datetime.utcnow(),
                )
            ],
            progress=None,
        )

        provider.online_write_batch(
            project=store.config.project,
            table=table_2,
            data=[
                (
                    entity_key,
                    {
                        "lat": ValueProto(double_val=2.0),
                        "lon": ValueProto(string_val="2.0"),
                    },
                    datetime.utcnow(),
                    datetime.utcnow(),
                )
            ],
            progress=None,
        )

        # Retrieve two features using two keys, one valid one non-existing
        result = store.get_online_features(
            feature_refs=["driver_locations:lon", "driver_locations_2:lon"],
            entity_rows=[{"driver": 1}, {"driver": 123}],
        )

        assert "driver_locations:lon" in result.to_dict()
        assert result.to_dict()["driver_locations:lon"] == ["1.0", None]
        assert result.to_dict()["driver_locations_2:lon"] == ["2.0", None]

        # invalid table reference
        with pytest.raises(ValueError):
            store.get_online_features(
                feature_refs=["driver_locations_bad:lon"], entity_rows=[{"driver": 1}],
            )
Example #5
0
def test_online_to_df():
    """
    Test dataframe conversion. Make sure the response columns and rows are
    the same order as the request.
    """

    driver_ids = [1, 2, 3]
    customer_ids = [4, 5, 6]
    name = "foo"
    lon_multiply = 1.0
    lat_multiply = 0.1
    age_multiply = 10
    avg_order_day_multiply = 1.0

    runner = CliRunner()
    with runner.local_repo(get_example_repo("example_feature_repo_1.py"),
                           "bigquery") as store:
        # Write three tables to online store
        driver_locations_fv = store.get_feature_view(name="driver_locations")
        customer_profile_fv = store.get_feature_view(name="customer_profile")
        customer_driver_combined_fv = store.get_feature_view(
            name="customer_driver_combined")
        provider = store._get_provider()

        for (d, c) in zip(driver_ids, customer_ids):
            """
            driver table:
            driver driver_locations__lon  driver_locations__lat
                1                   1.0                    0.1
                2                   2.0                    0.2
                3                   3.0                    0.3
            """
            driver_key = EntityKeyProto(
                join_keys=["driver"], entity_values=[ValueProto(int64_val=d)])
            provider.online_write_batch(
                config=store.config,
                table=driver_locations_fv,
                data=[(
                    driver_key,
                    {
                        "lat": ValueProto(double_val=d * lat_multiply),
                        "lon": ValueProto(string_val=str(d * lon_multiply)),
                    },
                    datetime.utcnow(),
                    datetime.utcnow(),
                )],
                progress=None,
            )
            """
            customer table
            customer  customer_profile__avg_orders_day customer_profile__name  customer_profile__age
                4                               4.0                  foo4                     40
                5                               5.0                  foo5                     50
                6                               6.0                  foo6                     60
            """
            customer_key = EntityKeyProto(
                join_keys=["customer"],
                entity_values=[ValueProto(int64_val=c)])
            provider.online_write_batch(
                config=store.config,
                table=customer_profile_fv,
                data=[(
                    customer_key,
                    {
                        "avg_orders_day":
                        ValueProto(float_val=c * avg_order_day_multiply),
                        "name":
                        ValueProto(string_val=name + str(c)),
                        "age":
                        ValueProto(int64_val=c * age_multiply),
                    },
                    datetime.utcnow(),
                    datetime.utcnow(),
                )],
                progress=None,
            )
            """
            customer_driver_combined table
            customer  driver  customer_driver_combined__trips
                4       1                                4
                5       2                               10
                6       3                               18
            """
            combo_keys = EntityKeyProto(
                join_keys=["customer", "driver"],
                entity_values=[
                    ValueProto(int64_val=c),
                    ValueProto(int64_val=d)
                ],
            )
            provider.online_write_batch(
                config=store.config,
                table=customer_driver_combined_fv,
                data=[(
                    combo_keys,
                    {
                        "trips": ValueProto(int64_val=c * d)
                    },
                    datetime.utcnow(),
                    datetime.utcnow(),
                )],
                progress=None,
            )

        # Get online features in dataframe
        result_df = store.get_online_features(
            feature_refs=[
                "driver_locations:lon",
                "driver_locations:lat",
                "customer_profile:avg_orders_day",
                "customer_profile:name",
                "customer_profile:age",
                "customer_driver_combined:trips",
            ],
            # Reverse the row order
            entity_rows=[{
                "driver": d,
                "customer": c
            } for (d, c) in zip(reversed(driver_ids), reversed(customer_ids))],
        ).to_df()
        """
        Construct the expected dataframe with reversed row order like so:
        driver  customer driver_locations__lon  driver_locations__lat  customer_profile__avg_orders_day customer_profile__name  customer_profile__age  customer_driver_combined__trips
            3       6         3.0                   0.3                    6.0                               foo6                   60                     18
            2       5         2.0                   0.2                    5.0                               foo5                   50                     10
            1       4         1.0                   0.1                    4.0                               foo4                   40                     4
        """
        df_dict = {
            "driver":
            driver_ids,
            "customer":
            customer_ids,
            "driver_locations__lon":
            [str(d * lon_multiply) for d in driver_ids],
            "driver_locations__lat": [d * lat_multiply for d in driver_ids],
            "customer_profile__avg_orders_day":
            [c * avg_order_day_multiply for c in customer_ids],
            "customer_profile__name": [name + str(c) for c in customer_ids],
            "customer_profile__age": [c * age_multiply for c in customer_ids],
            "customer_driver_combined__trips":
            [d * c for (d, c) in zip(driver_ids, customer_ids)],
        }
        # Requested column order
        ordered_column = [
            "driver",
            "customer",
            "driver_locations__lon",
            "driver_locations__lat",
            "customer_profile__avg_orders_day",
            "customer_profile__name",
            "customer_profile__age",
            "customer_driver_combined__trips",
        ]
        expected_df = pd.DataFrame(
            {k: reversed(v)
             for (k, v) in df_dict.items()})
        assert_frame_equal(result_df[ordered_column], expected_df)