Example #1
0
def test_plt_keypoints():
    num_monkeys = 1
    bm = bad_monkey(num_monkeys)
    # height, width = bm.size(2), bm.size(3)
    # heatmap = torch.rand(num_monkeys, 10, height, width, requires_grad=False)
    # k = MF.spacial_softmax(heatmap)
    k = torch.empty(1, 5, 2).uniform_(0.0, 1.0)
    image = plot_keypoints_on_image(k[0], bm[0], radius=7, thickness=3)
    plt.imshow(image)
    plt.show()
Example #2
0
def test_flowfield():
    u = UniImageViewer()
    x = bad_monkey()

    theta = torch.tensor([[1.0, 0.0, 0.0], [0.0, 1.0, 0.0]]).expand(1, -1, -1)

    grid = F.affine_grid(theta, x.shape)

    out = F.grid_sample(x, grid)

    u.render(out[0], block=True)
Example #3
0
def test_tps_random():
    images = []
    u = UniImageViewer(screen_resolution=(2400, 1200))
    x = bad_monkey()

    for i in range(5, 10):

        set = []

        for _ in range(8):
            pass
            # set.append(tps_random(x, num_control_points=20, var=1 / i))

        st = torch.cat(set, dim=2)
        images.append(st)

    img = torch.cat(images, dim=3)

    u.render(img, block=True)
Example #4
0
def test_tps():
    u = UniImageViewer()
    x = bad_monkey()

    theta = torch.tensor([[[0.0, 0.0], [0., 0.], [0., 0.], [0., 0.], [0., 0.],
                           [0., 0.], [0.0, 0.0]]])

    c = torch.tensor([
        [0., 0],
        [1., 0],
        [1., 1],
        [0, 1],
    ]).unsqueeze(0)

    grid = tps_grid(theta, c, x.shape)

    out = F.grid_sample(x, grid)

    u.render(out[0], block=True)
Example #5
0
def test_display_keypoints():
    x = com.bad_monkey()
    d = u.ResultsLogger('model_name', 'run_id')
    k = com.keypoints()
    d.display(x, blocking=True)
Example #6
0
def test_resize():
    x = com.bad_monkey()
    x = u.resize2D(x[0], (512, 512))
    d = u.ResultsLogger('model_name', 'run_id')
    d.display(x, blocking=True)
Example #7
0
def test_dual_tps_random_batched():
    u = UniImageViewer(screen_resolution=(2400, 1200))
    x = bad_monkey(2)