Example #1
0
 def _create():
     run_id = str(uuid.uuid4())
     experiment_id = str(random_int(10, 2000))
     user_id = random_str(random_int(10, 25))
     status = RunStatus.to_string(random.choice(RunStatus.all_status()))
     start_time = random_int(1, 10)
     end_time = start_time + random_int(1, 10)
     lifecycle_stage = LifecycleStage.ACTIVE
     artifact_uri = random_str(random_int(10, 40))
     ri = RunInfo(
         run_uuid=run_id,
         run_id=run_id,
         experiment_id=experiment_id,
         user_id=user_id,
         status=status,
         start_time=start_time,
         end_time=end_time,
         lifecycle_stage=lifecycle_stage,
         artifact_uri=artifact_uri,
     )
     return (
         ri,
         run_id,
         experiment_id,
         user_id,
         status,
         start_time,
         end_time,
         lifecycle_stage,
         artifact_uri,
     )
Example #2
0
    def test_with_latest_model_versions(self):
        name = random_str()
        mvd_1 = ModelVersion(name, "1", 1000, 2000,
                             "version 1", "user 1", "Production", "source 1", "run ID 1",
                             "PENDING_REGISTRATION", "Model version is in production!")
        mvd_2 = ModelVersion(name, "4", 1300, 2002,
                             "version 4", "user 2", "Staging", "source 4", "run ID 12",
                             "READY", "Model copied over!")
        as_dict = {"name": name,
                   "creation_timestamp": 1,
                   "last_updated_timestamp": 4000,
                   "description": random_str(),
                   "latest_versions": [mvd_1, mvd_2],
                   "tags": []}
        rmd_1 = RegisteredModel.from_dictionary(as_dict)
        as_dict["tags"] = {}
        self.assertEqual(dict(rmd_1), as_dict)

        proto = rmd_1.to_proto()
        self.assertEqual(proto.creation_timestamp, 1)
        self.assertEqual(proto.last_updated_timestamp, 4000)
        self.assertEqual(set([mvd.version for mvd in proto.latest_versions]),
                         set(["1", "4"]))
        self.assertEqual(set([mvd.name for mvd in proto.latest_versions]),
                         set([name, ]))
        self.assertEqual(set([mvd.current_stage for mvd in proto.latest_versions]),
                         set(["Production", "Staging"]))
        self.assertEqual(set([mvd.last_updated_timestamp for mvd in proto.latest_versions]),
                         set([2000, 2002]))
        self.assertEqual(set([mvd.creation_timestamp for mvd in proto.latest_versions]),
                         set([1300, 1000]))
Example #3
0
    def test_creation_and_hydration(self):
        name = random_str()
        description = random_str()
        rmd_1 = RegisteredModel(name, 1, 2, description, [])
        self._check(rmd_1, name, 1, 2, description, [])

        as_dict = {
            "name": name,
            "creation_timestamp": 1,
            "last_updated_timestamp": 2,
            "description": description,
            "latest_versions": []
        }
        self.assertEqual(dict(rmd_1), as_dict)

        proto = rmd_1.to_proto()
        self.assertEqual(proto.name, name)
        self.assertEqual(proto.creation_timestamp, 1)
        self.assertEqual(proto.last_updated_timestamp, 2)
        self.assertEqual(proto.description, description)
        rmd_2 = RegisteredModel.from_proto(proto)
        self._check(rmd_2, name, 1, 2, description, [])

        rmd_3 = RegisteredModel.from_dictionary(as_dict)
        self._check(rmd_3, name, 1, 2, description, [])
Example #4
0
 def _create():
     metrics = [Metric(random_str(10),
                       random_int(0, 1000), int(time.time()) + random_int(-1e4, 1e4))]
     params = [Param(random_str(10), random_str(random_int(10, 35))) for _ in range(10)]  # noqa
     tags = [RunTag(random_str(10), random_str(random_int(10, 35))) for _ in range(10)]  # noqa
     rd = RunData(metrics=metrics, params=params, tags=tags)
     return rd, metrics, params, tags
Example #5
0
 def _create():
     metrics = [
         Metric(
             key=random_str(10),
             value=random_int(0, 1000),
             timestamp=int(time.time()) + random_int(-1e4, 1e4),
             step=random_int(),
         )
     ]
     params = [Param(random_str(10), random_str(random_int(10, 35))) for _ in range(10)]
     tags = [RunTag(random_str(10), random_str(random_int(10, 35))) for _ in range(10)]
     rd = RunData(metrics=metrics, params=params, tags=tags)
     return rd, metrics, params, tags
Example #6
0
 def _create():
     run_uuid = str(uuid.uuid4())
     experiment_id = random_int(10, 2000)
     name = random_str(random_int(10, 40))
     source_type = random_int(1, 4)
     source_name = random_str(random_int(100, 300))
     entry_point_name = random_str(random_int(100, 300))
     user_id = random_str(random_int(10, 25))
     status = random_int(1, 5)
     start_time = random_int(1, 10)
     end_time = start_time + random_int(1, 10)
     source_version = random_str(random_int(10, 40))
     tags = [
         RunTag(key=random_str(random_int(1, 5)),
                value=random_str(random_int(1, 5))) for _ in range(2)
     ]
     artifact_uri = random_str(random_int(10, 40))
     ri = RunInfo(run_uuid=run_uuid,
                  experiment_id=experiment_id,
                  name=name,
                  source_type=source_type,
                  source_name=source_name,
                  entry_point_name=entry_point_name,
                  user_id=user_id,
                  status=status,
                  start_time=start_time,
                  end_time=end_time,
                  source_version=source_version,
                  tags=tags,
                  artifact_uri=artifact_uri)
     return (ri, run_uuid, experiment_id, name, source_type, source_name,
             entry_point_name, user_id, status, start_time, end_time,
             source_version, tags, artifact_uri)
Example #7
0
def test_infer_and_parse_json_input():
    size = 20
    # input is correctly recognized as list, and parsed as pd df with orient 'records'
    data = {
        "col_m": [random_int(0, 1000) for _ in range(size)],
        "col_z": [random_str(4) for _ in range(size)],
        "col_a": [random_int() for _ in range(size)],
    }
    p1 = pd.DataFrame.from_dict(data)
    p2 = pyfunc_scoring_server.infer_and_parse_json_input(
        p1.to_json(orient="records"))
    assert all(p1 == p2)

    # input is correctly recognized as a dict, and parsed as pd df with orient 'split'
    data = {
        "col_m": [random_int(0, 1000) for _ in range(size)],
        "col_z": [random_str(4) for _ in range(size)],
        "col_a": [random_int() for _ in range(size)],
    }
    p1 = pd.DataFrame.from_dict(data)
    p2 = pyfunc_scoring_server.infer_and_parse_json_input(
        p1.to_json(orient="split"))
    assert all(p1 == p2)

    # input is correctly recognized as tf serving input
    arr = [
        [[1, 2, 3], [4, 5, 6], [7, 8, 9]],
        [[3, 2, 1], [6, 5, 4], [9, 8, 7]],
    ]
    tfserving_input = {"instances": arr}
    result = pyfunc_scoring_server.infer_and_parse_json_input(
        json.dumps(tfserving_input))
    assert result.shape == (2, 3, 3)
    assert (result == np.array(arr)).all()

    # input is unrecognized JSON input
    with pytest.raises(MlflowException) as ex:
        pyfunc_scoring_server.infer_and_parse_json_input(
            json.dumps('"just a string"'))
    assert (
        "Failed to parse input from JSON. Ensure that input is a valid JSON"
        " list or dictionary." in str(ex))

    # input is not json str
    with pytest.raises(MlflowException) as ex:
        pyfunc_scoring_server.infer_and_parse_json_input("(not a json string)")
    assert (
        "Failed to parse input from JSON. Ensure that input is a valid JSON"
        " formatted string." in str(ex))
Example #8
0
    def test_create_experiment(self):
        fs = FileStore(self.test_root)

        # Error cases
        with self.assertRaises(Exception):
            fs.create_experiment(None)
        with self.assertRaises(Exception):
            fs.create_experiment("")

        exp_id_ints = (int(exp_id) for exp_id in self.experiments)
        next_id = str(max(exp_id_ints) + 1)
        name = random_str(25)  # since existing experiments are 10 chars long
        created_id = fs.create_experiment(name)
        # test that newly created experiment matches expected id
        self.assertEqual(created_id, next_id)

        # get the new experiment (by id) and verify (by name)
        exp1 = fs.get_experiment(created_id)
        self.assertEqual(exp1.name, name)
        self.assertEqual(
            exp1.artifact_location,
            path_to_local_file_uri(posixpath.join(self.test_root, created_id)))

        # get the new experiment (by name) and verify (by id)
        exp2 = fs.get_experiment_by_name(name)
        self.assertEqual(exp2.experiment_id, created_id)
Example #9
0
 def _create():
     metrics = [
         Metric(random_str(10), random_int(),
                int(time.time() + random_int(-1e4, 1e4)))
         for x in range(100)
     ]  # noqa
     params = [
         Param(random_str(10), random_str(random_int(10, 35)))
         for x in range(10)
     ]  # noqa
     rd = RunData()
     for p in params:
         rd.add_param(p)
     for m in metrics:
         rd.add_metric(m)
     return rd, metrics, params
Example #10
0
 def test_create_first_experiment(self):
     fs = FileStore(self.test_root)
     fs.list_experiments = mock.Mock(return_value=[])
     fs._create_experiment_with_id = mock.Mock()
     fs.create_experiment(random_str(1))
     fs._create_experiment_with_id.assert_called_once()
     experiment_id = fs._create_experiment_with_id.call_args[0][1]
     self.assertEqual(experiment_id, 0)
def test_parse_json_input_split_oriented():
    size = 200
    data = {"col_m": [random_int(0, 1000) for _ in range(size)],
            "col_z": [random_str(4) for _ in range(size)],
            "col_a": [random_int() for _ in range(size)]}
    p1 = pd.DataFrame.from_dict(data)
    p2 = pyfunc_scoring_server.parse_json_input(p1.to_json(orient="split"), orient="split")
    assert all(p1 == p2)
Example #12
0
    def test_creation_and_hydration(self):
        key = random_str(random_int(
            10, 25))  # random string on size in range [10, 25]
        value = random_str(random_int(
            55, 75))  # random string on size in range [55, 75]

        param = Param(key, value)
        self._check(param, key, value)

        as_dict = {"key": key, "value": value}
        self.assertEqual(dict(param), as_dict)

        proto = param.to_proto()
        param2 = Param.from_proto(proto)
        self._check(param2, key, value)

        param3 = Param.from_dictionary(as_dict)
        self._check(param3, key, value)
def test_parse_json_input_records_oriented():
    size = 20
    data = {"col_m": [random_int(0, 1000) for _ in range(size)],
            "col_z": [random_str(4) for _ in range(size)],
            "col_a": [random_int() for _ in range(size)]}
    p1 = pd.DataFrame.from_dict(data)
    p2 = pyfunc_scoring_server.parse_json_input(p1.to_json(orient="records"), orient="records")
    # "records" orient may shuffle column ordering. Hence comparing each column Series
    for col in data.keys():
        assert all(p1[col] == p2[col])
    def test_with_latest_model_versions(self):
        name = random_str()
        mvd_1 = ModelVersionDetailed(RegisteredModel(name), 1, 1000, 2000,
                                     "version 1", "user 1", "Production",
                                     "source 1", "run ID 1", "FAILED_DELETION",
                                     "Model version is in production!")
        mvd_2 = ModelVersionDetailed(RegisteredModel(name), 4, 1300, 2002,
                                     "version 4", "user 2", "Staging",
                                     "source 4", "run ID 12", "READY",
                                     "Model copied over!")
        as_dict = {
            "name": name,
            "creation_timestamp": 1,
            "last_updated_timestamp": 4000,
            "description": random_str(),
            "latest_versions": [mvd_1, mvd_2]
        }
        rmd_1 = RegisteredModelDetailed.from_dictionary(as_dict)
        self.assertEqual(dict(rmd_1), as_dict)

        proto = rmd_1.to_proto()
        self.assertEqual(proto.creation_timestamp, 1)
        self.assertEqual(proto.last_updated_timestamp, 4000)
        self.assertEqual(
            set([mvd.model_version.version for mvd in proto.latest_versions]),
            set([1, 4]))
        self.assertEqual(
            set([
                mvd.model_version.registered_model.name
                for mvd in proto.latest_versions
            ]), set([
                name,
            ]))
        self.assertEqual(
            set([mvd.current_stage for mvd in proto.latest_versions]),
            set(["Production", "Staging"]))
        self.assertEqual(
            set([mvd.last_updated_timestamp for mvd in proto.latest_versions]),
            set([2000, 2002]))
        self.assertEqual(
            set([mvd.creation_timestamp for mvd in proto.latest_versions]),
            set([1300, 1000]))
Example #15
0
    def test_creation_and_hydration(self):
        name = random_str()
        t1, t2 = 100, 150
        source = "path/to/source"
        run_id = uuid.uuid4().hex
        run_link = "http://localhost:5000/path/to/run"
        tags = [ModelVersionTag("key", "value"), ModelVersionTag("randomKey", "not a random value")]
        mvd = ModelVersion(name, "5", t1, t2, "version five", "user 1", "Production",
                           source, run_id, "READY", "Model version #5 is ready to use.", tags,
                           run_link)
        self._check(mvd, name, "5", t1, t2, "version five", "user 1",
                    "Production", source, run_id, "READY",
                    "Model version #5 is ready to use.",
                    {tag.key: tag.value for tag in (tags or [])})

        expected_dict = {
            "name": name,
            "version": "5",
            "creation_timestamp": t1,
            "last_updated_timestamp": t2,
            "description": "version five",
            "user_id": "user 1",
            "current_stage": "Production",
            "source": source,
            "run_id": run_id,
            "run_link": run_link,
            "status": "READY",
            "status_message": "Model version #5 is ready to use.",
            "tags": {tag.key: tag.value for tag in (tags or [])}}
        model_version_as_dict = dict(mvd)
        self.assertEqual(model_version_as_dict, expected_dict)

        proto = mvd.to_proto()
        self.assertEqual(proto.name, name)
        self.assertEqual(proto.version, "5")
        self.assertEqual(proto.status, ModelVersionStatus.from_string("READY"))
        self.assertEqual(proto.status_message, "Model version #5 is ready to use.")
        self.assertEqual(set([tag.key for tag in proto.tags]),
                         set(["key", "randomKey"]))
        self.assertEqual(set([tag.value for tag in proto.tags]),
                         set(["value", "not a random value"]))
        mvd_2 = ModelVersion.from_proto(proto)
        self._check(mvd_2, name, "5", t1, t2, "version five", "user 1",
                    "Production", source, run_id, "READY",
                    "Model version #5 is ready to use.",
                    {tag.key: tag.value for tag in (tags or [])})

        expected_dict.update({"registered_model": RegisteredModel(name)})
        expected_dict["tags"] = tags
        mvd_3 = ModelVersion.from_dictionary(expected_dict)
        self._check(mvd_3, name, "5", t1, t2, "version five", "user 1",
                    "Production", source, run_id, "READY",
                    "Model version #5 is ready to use.",
                    {tag.key: tag.value for tag in (tags or [])})
Example #16
0
 def test_with_tags(self):
     name = random_str()
     tag1 = RegisteredModelTag("key", "value")
     tag2 = RegisteredModelTag("randomKey", "not a random value")
     tags = [tag1, tag2]
     as_dict = {"name": name,
                "creation_timestamp": 1,
                "last_updated_timestamp": 4000,
                "description": random_str(),
                "latest_versions": [],
                "tags": tags}
     rmd_1 = RegisteredModel.from_dictionary(as_dict)
     as_dict["tags"] = {tag.key: tag.value for tag in (tags or [])}
     self.assertEqual(dict(rmd_1), as_dict)
     proto = rmd_1.to_proto()
     self.assertEqual(proto.creation_timestamp, 1)
     self.assertEqual(proto.last_updated_timestamp, 4000)
     self.assertEqual(set([tag.key for tag in proto.tags]),
                      set(["key", "randomKey"]))
     self.assertEqual(set([tag.value for tag in proto.tags]),
                      set(["value", "not a random value"]))
Example #17
0
 def _create():
     run_id = str(uuid.uuid4())
     experiment_id = str(random_int(10, 2000))
     name = random_str(random_int(10, 40))
     source_type = random_int(1, 4)
     source_name = random_str(random_int(100, 300))
     entry_point_name = random_str(random_int(100, 300))
     user_id = random_str(random_int(10, 25))
     status = random_int(1, 5)
     start_time = random_int(1, 10)
     end_time = start_time + random_int(1, 10)
     source_version = random_str(random_int(10, 40))
     lifecycle_stage = LifecycleStage.ACTIVE
     artifact_uri = random_str(random_int(10, 40))
     ri = RunInfo(run_uuid=run_id,
                  run_id=run_id,
                  experiment_id=experiment_id,
                  name=name,
                  source_type=source_type,
                  source_name=source_name,
                  entry_point_name=entry_point_name,
                  user_id=user_id,
                  status=status,
                  start_time=start_time,
                  end_time=end_time,
                  source_version=source_version,
                  lifecycle_stage=lifecycle_stage,
                  artifact_uri=artifact_uri)
     return (ri, run_id, experiment_id, name, source_type, source_name,
             entry_point_name, user_id, status, start_time, end_time,
             source_version, lifecycle_stage, artifact_uri)
def test_parse_json_input_split_oriented_to_numpy_array():
    size = 200
    data = OrderedDict([("col_m", [random_int(0, 1000) for _ in range(size)]),
                        ("col_z", [random_str(4) for _ in range(size)]),
                        ("col_a", [random_int() for _ in range(size)])])
    p0 = pd.DataFrame.from_dict(data)
    np_array = np.array([[a, b, c] for a, b, c in
                         zip(data['col_m'], data['col_z'], data['col_a'])],
                        dtype=object)
    p1 = pd.DataFrame(np_array).infer_objects()
    p2 = pyfunc_scoring_server.parse_split_oriented_json_input_to_numpy(
        p0.to_json(orient="split"))
    np.testing.assert_array_equal(p1, p2)
Example #19
0
 def _create():
     metrics = [
         Metric(random_str(10), random_int(0, 1000),
                int(time.time() + random_int(-1e4, 1e4)))
         for _ in range(100)
     ]
     params = [
         Param(random_str(10), random_str(random_int(10, 35)))
         for _ in range(10)
     ]  # noqa
     tags = [
         RunTag(random_str(10), random_str(random_int(10, 35)))
         for _ in range(10)
     ]  # noqa
     rd = RunData()
     for p in params:
         rd._add_param(p)
     for m in metrics:
         rd._add_metric(m)
     for t in tags:
         rd._add_tag(t)
     return rd, metrics, params, tags
Example #20
0
    def test_get_experiment_by_name(self):
        fs = FileStore(self.test_root)
        for exp_id in self.experiments:
            name = self.exp_data[exp_id]["name"]
            exp = fs.get_experiment_by_name(name)
            self.assertEqual(exp.experiment_id, exp_id)
            self.assertEqual(exp.name, self.exp_data[exp_id]["name"])
            self.assertEqual(exp.artifact_location, self.exp_data[exp_id]["artifact_location"])

        # test that fake experiments dont exist.
        # look up experiments with names of length 15 since created ones are of length 10
        for exp_names in set(random_str(15) for x in range(20)):
            exp = fs.get_experiment_by_name(exp_names)
            self.assertIsNone(exp)
    def test_create_registered_model(self):
        name = random_str() + "abCD"
        rm1 = self._rm_maker(name)
        self.assertEqual(rm1.name, name)

        # error on duplicate
        with self.assertRaises(MlflowException) as exception_context:
            self._rm_maker(name)
        assert exception_context.exception.error_code == ErrorCode.Name(RESOURCE_ALREADY_EXISTS)

        # slightly different name is ok
        for name2 in [name + "extra", name.lower(), name.upper(), name + name]:
            rm2 = self._rm_maker(name2)
            self.assertEqual(rm2.name, name2)
Example #22
0
 def test_list_experiments_paginated(self):
     fs = FileStore(self.test_root)
     for _ in range(10):
         fs.create_experiment(random_str(12))
     exps1 = fs.list_experiments(max_results=4, page_token=None)
     self.assertEqual(len(exps1), 4)
     self.assertIsNotNone(exps1.token)
     exps2 = fs.list_experiments(max_results=4, page_token=None)
     self.assertEqual(len(exps2), 4)
     self.assertIsNotNone(exps2.token)
     self.assertNotEqual(exps1, exps2)
     exps3 = fs.list_experiments(max_results=500, page_token=exps2.token)
     self.assertLessEqual(len(exps3), 500)
     if len(exps3) < 500:
         self.assertIsNone(exps3.token)
Example #23
0
    def test_create_experiment(self):
        fs = FileStore(self.test_root)
        next_id = max(self.experiments) + 1
        name = random_str(25)  # since existing experiments are 10 chars long
        created_id = fs.create_experiment(name)
        # test that newly created experiment matches expected id
        self.assertEqual(created_id, next_id)

        # get the new experiment (by id) and verify (by name)
        exp1 = fs.get_experiment(created_id)
        self.assertEqual(exp1.name, name)

        # get the new experiment (by name) and verify (by id)
        exp2 = fs.get_experiment_by_name(name)
        self.assertEqual(exp2.experiment_id, created_id)
Example #24
0
    def test_creation_and_hydration(self):
        name = random_str()
        registered_model = RegisteredModel(name)
        self._check(registered_model, name)

        as_dict = {"name": name}
        self.assertEqual(dict(registered_model), as_dict)

        proto = registered_model.to_proto()
        self.assertEqual(proto.name, name)
        registered_model2 = RegisteredModel.from_proto(proto)
        self._check(registered_model2, name)

        registered_model3 = RegisteredModel.from_dictionary(as_dict)
        self._check(registered_model3, name)
    def test_creation_and_hydration(self):
        name = random_str()
        rm = RegisteredModel(name)
        t1, t2 = 100, 150
        source = "path/to/source"
        run_id = uuid.uuid4().hex
        mvd = ModelVersionDetailed(rm, 5, t1, t2, "version five", "user 1",
                                   "Production", source, run_id, "READY",
                                   "Model version #5 is ready to use.")
        self._check(mvd, name, 5, t1, t2, "version five", "user 1",
                    "Production", source, run_id, "READY",
                    "Model version #5 is ready to use.")

        expected_dict = {
            "version": 5,
            "creation_timestamp": t1,
            "last_updated_timestamp": t2,
            "description": "version five",
            "user_id": "user 1",
            "current_stage": "Production",
            "source": source,
            "run_id": run_id,
            "status": "READY",
            "status_message": "Model version #5 is ready to use."
        }
        model_version_as_dict = dict(mvd)
        self.assertIsInstance(model_version_as_dict["registered_model"],
                              RegisteredModel)
        self.assertEqual(model_version_as_dict["registered_model"].name, name)
        model_version_as_dict.pop("registered_model")
        self.assertEqual(model_version_as_dict, expected_dict)

        proto = mvd.to_proto()
        self.assertEqual(proto.model_version.registered_model.name, name)
        self.assertEqual(proto.model_version.version, 5)
        self.assertEqual(proto.status, ModelVersionStatus.from_string("READY"))
        self.assertEqual(proto.status_message,
                         "Model version #5 is ready to use.")
        mvd_2 = ModelVersionDetailed.from_proto(proto)
        self._check(mvd_2, name, 5, t1, t2, "version five", "user 1",
                    "Production", source, run_id, "READY",
                    "Model version #5 is ready to use.")

        expected_dict.update({"registered_model": RegisteredModel(name)})
        mvd_3 = ModelVersionDetailed.from_dictionary(expected_dict)
        self._check(mvd_3, name, 5, t1, t2, "version five", "user 1",
                    "Production", source, run_id, "READY",
                    "Model version #5 is ready to use.")
Example #26
0
    def test_creation_and_hydration(self):
        path = random_str(random_int(10, 50))
        is_dir = random_int(10, 2500) % 2 == 0
        size_in_bytes = random_int(1, 10000)
        fi1 = FileInfo(path, is_dir, size_in_bytes)
        self._check(fi1, path, is_dir, size_in_bytes)

        as_dict = {"path": path, "is_dir": is_dir, "file_size": size_in_bytes}
        self.assertEqual(dict(fi1), as_dict)

        proto = fi1.to_proto()
        fi2 = FileInfo.from_proto(proto)
        self._check(fi2, path, is_dir, size_in_bytes)

        fi3 = FileInfo.from_dictionary(as_dict)
        self._check(fi3, path, is_dir, size_in_bytes)
Example #27
0
    def test_creation_and_hydration(self):
        key = random_str()
        value = 10000
        ts = int(time.time())

        metric = Metric(key, value, ts)
        self._check(metric, key, value, ts)

        as_dict = {"key": key, "value": value, "timestamp": ts}
        self.assertEqual(dict(metric), as_dict)

        proto = metric.to_proto()
        metric2 = metric.from_proto(proto)
        self._check(metric2, key, value, ts)

        metric3 = Metric.from_dictionary(as_dict)
        self._check(metric3, key, value, ts)
Example #28
0
def test_creation_and_hydration():
    key = random_str()
    value = 10000
    ts = int(1000 * time.time())
    step = random_int()

    metric = Metric(key, value, ts, step)
    _check(metric, key, value, ts, step)

    as_dict = {"key": key, "value": value, "timestamp": ts, "step": step}
    assert dict(metric) == as_dict

    proto = metric.to_proto()
    metric2 = metric.from_proto(proto)
    _check(metric2, key, value, ts, step)

    metric3 = Metric.from_dictionary(as_dict)
    _check(metric3, key, value, ts, step)
    def test_creation_and_hydration(self):
        name = random_str()
        rm = RegisteredModel(name)
        model_version = ModelVersion(rm, 100)
        self._check(model_version, name, 100)

        expected_dict = {"version": 100}
        model_version_as_dict = dict(model_version)
        self.assertEqual(model_version_as_dict["version"], 100)
        self.assertIsInstance(model_version_as_dict["registered_model"],
                              RegisteredModel)
        self.assertEqual(model_version_as_dict["registered_model"].name, name)
        model_version_as_dict.pop("registered_model")
        self.assertEqual(model_version_as_dict, expected_dict)

        proto = model_version.to_proto()
        self.assertEqual(proto.registered_model.name, name)
        self.assertEqual(proto.version, 100)
        model_version_2 = ModelVersion.from_proto(proto)
        self._check(model_version_2, name, 100)

        expected_dict.update({"registered_model": RegisteredModel(name)})
        model_version_3 = ModelVersion.from_dictionary(expected_dict)
        self._check(model_version_3, name, 100)
Example #30
0
 def _create_root(self, root):
     self.test_root = os.path.join(root, "test_file_store_%d" % random_int())
     os.mkdir(self.test_root)
     self.experiments = [random_int(100, int(1e9)) for _ in range(3)]
     self.exp_data = {}
     self.run_data = {}
     # Include default experiment
     self.experiments.append(Experiment.DEFAULT_EXPERIMENT_ID)
     for exp in self.experiments:
         # create experiment
         exp_folder = os.path.join(self.test_root, str(exp))
         os.makedirs(exp_folder)
         d = {"experiment_id": exp, "name": random_str(), "artifact_location": exp_folder}
         self.exp_data[exp] = d
         write_yaml(exp_folder, FileStore.META_DATA_FILE_NAME, d)
         # add runs
         self.exp_data[exp]["runs"] = []
         for _ in range(2):
             run_uuid = uuid.uuid4().hex
             self.exp_data[exp]["runs"].append(run_uuid)
             run_folder = os.path.join(exp_folder, run_uuid)
             os.makedirs(run_folder)
             run_info = {"run_uuid": run_uuid,
                         "experiment_id": exp,
                         "name": random_str(random_int(10, 40)),
                         "source_type": random_int(1, 4),
                         "source_name": random_str(random_int(100, 300)),
                         "entry_point_name": random_str(random_int(100, 300)),
                         "user_id": random_str(random_int(10, 25)),
                         "status": random_int(1, 5),
                         "start_time": random_int(1, 10),
                         "end_time": random_int(20, 30),
                         "source_version": random_str(random_int(10, 30)),
                         "tags": [],
                         "artifact_uri": "%s/%s" % (run_folder, FileStore.ARTIFACTS_FOLDER_NAME),
                         }
             write_yaml(run_folder, FileStore.META_DATA_FILE_NAME, run_info)
             self.run_data[run_uuid] = run_info
             # params
             params_folder = os.path.join(run_folder, FileStore.PARAMS_FOLDER_NAME)
             os.makedirs(params_folder)
             params = {}
             for _ in range(5):
                 param_name = random_str(random_int(4, 12))
                 param_value = random_str(random_int(10, 15))
                 param_file = os.path.join(params_folder, param_name)
                 with open(param_file, 'w') as f:
                     f.write(param_value)
                 params[param_name] = param_value
             self.run_data[run_uuid]["params"] = params
             # metrics
             metrics_folder = os.path.join(run_folder, FileStore.METRICS_FOLDER_NAME)
             os.makedirs(metrics_folder)
             metrics = {}
             for _ in range(3):
                 metric_name = random_str(random_int(6, 10))
                 timestamp = int(time.time())
                 metric_file = os.path.join(metrics_folder, metric_name)
                 values = []
                 for _ in range(10):
                     metric_value = random_int(100, 2000)
                     timestamp += random_int(10000, 2000000)
                     values.append((timestamp, metric_value))
                     with open(metric_file, 'a') as f:
                         f.write("%d %d\n" % (timestamp, metric_value))
                 metrics[metric_name] = values
             self.run_data[run_uuid]["metrics"] = metrics
             # artifacts
             os.makedirs(os.path.join(run_folder, FileStore.ARTIFACTS_FOLDER_NAME))