def test_custom_groups(sample_matrix_store, grid_config):
    with testing.postgresql.Postgresql() as postgresql:
        engine = create_engine(postgresql.url())
        ensure_db(engine)
        init_engine(engine)

        with mock_s3():
            s3_conn = boto3.resource('s3')
            s3_conn.create_bucket(Bucket='econ-dev')

            MatrixFactory(matrix_uuid="1234")
            session.commit()
            # create training set
            project_path = 'econ-dev/inspections'
            model_storage_engine = S3ModelStorageEngine(project_path)
            trainer = ModelTrainer(
                project_path=project_path,
                experiment_hash=None,
                model_storage_engine=model_storage_engine,
                model_grouper=ModelGrouper(['class_path']),
                db_engine=engine,
            )
            model_ids = trainer.train_models(grid_config=grid_config,
                                             misc_db_parameters=dict(),
                                             matrix_store=sample_matrix_store)
            # expect only one model group now
            records = [
                row[0] for row in engine.execute(
                    'select distinct model_group_id from model_metadata.models'
                )
            ]
            assert len(records) == 1
            assert records[0] == model_ids[0]
def test_baseline_exception_handling(sample_matrix_store):
    grid_config = {
        'triage.component.catwalk.baselines.rankers.PercentileRankOneFeature':
        {
            'feature': ['feature_one', 'feature_three']
        }
    }
    with testing.postgresql.Postgresql() as postgresql:
        db_engine = create_engine(postgresql.url())
        project_path = 'econ-dev/inspections'
        model_storage_engine = S3ModelStorageEngine(project_path)
        ensure_db(db_engine)
        init_engine(db_engine)
        with mock_s3():
            s3_conn = boto3.resource('s3')
            s3_conn.create_bucket(Bucket='econ-dev')
            trainer = ModelTrainer(project_path='econ-dev/inspections',
                                   experiment_hash=None,
                                   model_storage_engine=model_storage_engine,
                                   db_engine=db_engine,
                                   model_grouper=ModelGrouper())

            train_tasks = trainer.generate_train_tasks(grid_config, dict(),
                                                       sample_matrix_store)
            # Creates a matrix entry in the matrices table with uuid from train_metadata
            MatrixFactory(matrix_uuid="1234")
            session.commit()

            model_ids = []
            for train_task in train_tasks:
                model_ids.append(trainer.process_train_task(**train_task))
            assert model_ids == [1, None]
    def test_retry_max(self):
        db_engine = None
        trainer = None
        # set up a basic model training run
        # TODO abstract the setup of a basic model training run where
        # we don't worry about the specific values used? it would make
        # tests like this require a bit less noise to read past
        with testing.postgresql.Postgresql() as postgresql:
            db_engine = create_engine(postgresql.url())
            ensure_db(db_engine)
            init_engine(db_engine)
            trainer = ModelTrainer(
                project_path='econ-dev/inspections',
                experiment_hash=None,
                model_storage_engine=InMemoryModelStorageEngine(
                    project_path=''),
                db_engine=db_engine,
                model_grouper=ModelGrouper())

        # the postgres server goes out of scope here and thus no longer exists
        with patch('time.sleep') as time_mock:
            with self.assertRaises(sqlalchemy.exc.OperationalError):
                trainer.train_models(grid_config(), dict(),
                                     sample_matrix_store())
            # we want to make sure that we are using the retrying module sanely
            # as opposed to matching the exact # of calls specified by the code
            assert len(time_mock.mock_calls) > 5
Example #4
0
def test_uniform_distribution_entity_id_index():
    with testing.postgresql.Postgresql() as postgresql:
        db_engine = create_engine(postgresql.url())
        ensure_db(db_engine)
        init_engine(db_engine)
        model = ModelFactory()
        feature_importances = [
            FeatureImportanceFactory(model_rel=model,
                                     feature='feature_{}'.format(i))
            for i in range(0, 10)
        ]
        data_dict = {'entity_id': [1, 2]}
        for imp in feature_importances:
            data_dict[imp.feature] = [0.5, 0.5]
        test_store = InMemoryMatrixStore(
            matrix=pandas.DataFrame.from_dict(data_dict),
            metadata=sample_metadata())
        session.commit()
        results = uniform_distribution(db_engine,
                                       model_id=model.model_id,
                                       as_of_date='2016-01-01',
                                       test_matrix_store=test_store,
                                       n_ranks=5)

        assert len(results) == 10  # 5 features x 2 entities
        for result in results:
            assert 'entity_id' in result
            assert 'feature_name' in result
            assert 'score' in result
            assert 'feature_value' in result
            assert result['feature_value'] == 0.5
            assert result['score'] >= 0
            assert result['score'] <= 1
            assert isinstance(result['feature_name'], str)
            assert result['entity_id'] in [1, 2]
Example #5
0
    def filter_same_train_end_times(self, engine):
        ensure_db(engine)
        init_engine(engine)
        mg1 = ModelGroupFactory(model_group_id=1, model_type='modelType1')
        mg2 = ModelGroupFactory(model_group_id=2, model_type='modelType2')
        mg3 = ModelGroupFactory(model_group_id=3, model_type='modelType3')
        mg4 = ModelGroupFactory(model_group_id=4, model_type='modelType4')
        # model group 1
        ModelFactory(model_group_rel=mg1, train_end_time=datetime(2014, 1, 1))
        ModelFactory(model_group_rel=mg1, train_end_time=datetime(2015, 1, 1))
        ModelFactory(model_group_rel=mg1, train_end_time=datetime(2016, 1, 1))
        ModelFactory(model_group_rel=mg1, train_end_time=datetime(2017, 1, 1))
        # model group 2 only has three timestamps, should not pass
        ModelFactory(model_group_rel=mg2, train_end_time=datetime(2014, 1, 1))
        # model group 3
        ModelFactory(model_group_rel=mg3, train_end_time=datetime(2014, 1, 1))
        ModelFactory(model_group_rel=mg3, train_end_time=datetime(2015, 1, 1))
        ModelFactory(model_group_rel=mg3, train_end_time=datetime(2016, 1, 1))
        ModelFactory(model_group_rel=mg3, train_end_time=datetime(2017, 1, 1))
        # model group 4 only has three timestamps, should not pass
        ModelFactory(model_group_rel=mg4, train_end_time=datetime(2015, 1, 1))
        ModelFactory(model_group_rel=mg4, train_end_time=datetime(2016, 1, 1))

        session.commit()
        train_end_times = [
            '2014-01-01', '2015-01-01', '2016-01-01', '2017-01-01'
        ]
        model_groups = [1, 2, 3, 4]
        model_group_ids = model_groups_filter(
            train_end_times=train_end_times,
            initial_model_group_ids=model_groups,
            models_table='models',
            db_engine=engine)

        return model_group_ids
        def replace_db(arg):
            self.new_server = testing.postgresql.Postgresql(port=port)
            db_engine = create_engine(self.new_server.url())
            ensure_db(db_engine)
            init_engine(db_engine)

            # Creates a matrix entry in the matrices table with uuid from train_metadata
            MatrixFactory(matrix_uuid="1234")
            session.commit()
Example #7
0
def update_ranks_test(predictor,
                      entities_scores_labels,
                      rank_col,
                      expected_result,
                      model_random_seed=12345,
                      need_seed_data=True):
    """Not a test in itself but rather a utility called by many of the ranking tests"""
    ensure_db(predictor.db_engine)
    init_engine(predictor.db_engine)
    model_id = 5
    matrix_uuid = "4567"
    matrix_type = "test"
    as_of_date = datetime.datetime(2012, 1, 1)
    if need_seed_data:
        matrix = MatrixFactory(matrix_uuid=matrix_uuid)
        model = ModelFactory(model_id=model_id, random_seed=model_random_seed)
        for entity_id, score, label in entities_scores_labels:
            PredictionFactory(model_rel=model,
                              matrix_rel=matrix,
                              as_of_date=as_of_date,
                              entity_id=entity_id,
                              score=score,
                              label_value=int(label))
        factory_session.commit()
    predictor.update_db_with_ranks(
        model_id=model_id,
        matrix_uuid=matrix_uuid,
        matrix_type=TestMatrixType,
    )
    ranks = tuple(row for row in predictor.db_engine.execute(
        f'''
select entity_id, {rank_col}::float
from {matrix_type}_results.predictions
where as_of_date = %s and model_id = %s and matrix_uuid = %s order by {rank_col} asc''',
        (as_of_date, model_id, matrix_uuid)))
    assert ranks == expected_result

    # Test that the predictions metadata table is populated
    metadata_records = [
        row for row in predictor.db_engine.execute(
            f"""select tiebreaker_ordering, prediction_metadata.random_seed, models.random_seed
        from {matrix_type}_results.prediction_metadata
        join triage_metadata.models using (model_id)
        join triage_metadata.matrices using (matrix_uuid)
        """)
    ]
    assert len(metadata_records) == 1
    tiebreaker_ordering, random_seed, received_model_random_seed = metadata_records[
        0]
    if tiebreaker_ordering == 'random':
        assert random_seed is model_random_seed
    else:
        assert not random_seed
    assert tiebreaker_ordering == predictor.rank_order
    assert received_model_random_seed == model_random_seed
Example #8
0
def test_Audition():
    with testing.postgresql.Postgresql() as postgresql:
        db_engine = create_engine(postgresql.url())
        ensure_db(db_engine)
        init_engine(db_engine)

        num_model_groups = 10
        model_types = [
            "classifier type {}".format(i) for i in range(0, num_model_groups)
        ]
        model_groups = [
            ModelGroupFactory(model_type=model_type)
            for model_type in model_types
        ]
        train_end_times = [
            datetime(2013, 1, 1),
            datetime(2014, 1, 1),
            datetime(2015, 1, 1),
            datetime(2016, 1, 1),
        ]

        models = [
            ModelFactory(model_group_rel=model_group,
                         train_end_time=train_end_time)
            for model_group in model_groups
            for train_end_time in train_end_times
        ]
        metrics = [
            ("precision@", "100_abs"),
            ("recall@", "100_abs"),
            ("precision@", "50_abs"),
            ("recall@", "50_abs"),
            ("fpr@", "10_pct"),
        ]

        class ImmediateEvalFactory(EvaluationFactory):
            evaluation_start_time = factory.LazyAttribute(
                lambda o: o.model_rel.train_end_time)

        for model in models:
            for (metric, parameter) in metrics:
                ImmediateEvalFactory(model_rel=model,
                                     metric=metric,
                                     parameter=parameter)

        session.commit()

        with tempfile.TemporaryDirectory() as td:
            with mock.patch('os.getcwd') as mock_getcwd:
                mock_getcwd.return_value = td
                AuditionRunner(config_dict=config,
                               db_engine=db_engine,
                               directory=td).run()
                assert len(os.listdir(os.getcwd())) == 6
Example #9
0
def rig_engines():
    """Set up a db engine and project storage engine

    Yields (tuple) (database engine, project storage engine)
    """
    with testing.postgresql.Postgresql() as postgresql:
        db_engine = create_engine(postgresql.url())
        ensure_db(db_engine)
        init_engine(db_engine)
        with tempfile.TemporaryDirectory() as temp_dir:
            project_storage = ProjectStorage(temp_dir)
            yield db_engine, project_storage
Example #10
0
def test_n_jobs_not_new_model(sample_matrix_store):
    grid_config = {
        'sklearn.ensemble.AdaBoostClassifier': {
            'n_estimators': [10, 100, 1000]
        },
        'sklearn.ensemble.RandomForestClassifier': {
            'n_estimators': [10, 100],
            'max_features': ['sqrt', 'log2'],
            'max_depth': [5, 10, 15, 20],
            'criterion': ['gini', 'entropy'],
            'n_jobs': [12, 24],
        }
    }

    with testing.postgresql.Postgresql() as postgresql:
        db_engine = create_engine(postgresql.url())
        ensure_db(db_engine)
        init_engine(db_engine)
        with mock_s3():
            s3_conn = boto3.resource('s3')
            s3_conn.create_bucket(Bucket='econ-dev')
            trainer = ModelTrainer(project_path='econ-dev/inspections',
                                   experiment_hash=None,
                                   model_storage_engine=S3ModelStorageEngine(
                                       'econ-dev/inspections'),
                                   db_engine=db_engine,
                                   model_grouper=ModelGrouper())

            train_tasks = trainer.generate_train_tasks(
                grid_config,
                dict(),
                sample_matrix_store,
            )
            # Creates a matrix entry in the matrices table with uuid from train_metadata
            MatrixFactory(matrix_uuid="1234")
            session.commit()

            assert len(train_tasks
                       ) == 35  # 32+3, would be (32*2)+3 if we didn't remove
            assert len([
                task for task in train_tasks if 'n_jobs' in task['parameters']
            ]) == 32

            for train_task in train_tasks:
                trainer.process_train_task(**train_task)

            for row in db_engine.execute(
                    'select model_parameters from model_metadata.model_groups'
            ):
                assert 'n_jobs' not in row[0]
Example #11
0
def test_prediction_ranks_multiple_dates(project_storage, db_engine):
    """make sure that multiple as-of-dates in a single matrix are handled correctly.
    keep the other variables simple by making no within-date ties that would end up
    testing the tiebreaker logic, just data for two dates with data that could theoretically
    confound a bad ranking method:
    - a different order for entities in both dates
    - each date has some not in the other
    """
    ensure_db(db_engine)
    init_engine(db_engine)
    predictor = Predictor(project_storage.model_storage_engine(), db_engine,
                          'worst')
    model_id = 5
    matrix_uuid = "4567"
    matrix_type = "test"
    entities_dates_and_scores = (
        (23, datetime.datetime(2012, 1, 1), 0.95),
        (34, datetime.datetime(2012, 1, 1), 0.94),
        (45, datetime.datetime(2013, 1, 1), 0.92),
        (23, datetime.datetime(2013, 1, 1), 0.45),
    )
    expected_result = (
        (23, datetime.datetime(2012, 1, 1), 1),
        (34, datetime.datetime(2012, 1, 1), 2),
        (45, datetime.datetime(2013, 1, 1), 3),
        (23, datetime.datetime(2013, 1, 1), 4),
    )
    matrix = MatrixFactory(matrix_uuid=matrix_uuid)
    model = ModelFactory(model_id=model_id)
    for entity_id, as_of_date, score in entities_dates_and_scores:
        PredictionFactory(model_rel=model,
                          matrix_rel=matrix,
                          as_of_date=as_of_date,
                          entity_id=entity_id,
                          score=score)
    factory_session.commit()
    predictor.update_db_with_ranks(
        model_id=model_id,
        matrix_uuid=matrix_uuid,
        matrix_type=TestMatrixType,
    )
    ranks = tuple(row for row in predictor.db_engine.execute(
        f'''
select entity_id, as_of_date, rank_abs_no_ties
from {matrix_type}_results.predictions
where model_id = %s and matrix_uuid = %s order by rank_abs_no_ties''', (
            model_id, matrix_uuid)))
    assert ranks == expected_result
Example #12
0
def test_predictor_get_train_columns():
    with testing.postgresql.Postgresql() as postgresql:
        db_engine = create_engine(postgresql.url())
        ensure_db(db_engine)
        init_engine(db_engine)

        project_path = 'econ-dev/inspections'
        with tempfile.TemporaryDirectory() as temp_dir:
            train_store, test_store = sample_metta_csv_diff_order(temp_dir)

            model_storage_engine = InMemoryModelStorageEngine(project_path)
            _, model_id = \
                fake_trained_model(
                    project_path,
                    model_storage_engine,
                    db_engine,
                    train_matrix_uuid=train_store.uuid
                )
            predictor = Predictor(project_path, model_storage_engine,
                                  db_engine)

            # The train_store uuid is stored in fake_trained_model. Storing the other
            MatrixFactory(matrix_uuid=test_store.uuid)
            session.commit()

            # Runs the same test for training and testing predictions
            for store, mat_type in zip((train_store, test_store),
                                       ("train", "test")):
                predict_proba = predictor.predict(
                    model_id,
                    store,
                    misc_db_parameters=dict(),
                    train_matrix_columns=train_store.columns())
                # assert
                # 1. that we calculated predictions
                assert len(predict_proba) > 0

                # 2. that the predictions table entries are present and
                # can be linked to the original models
                records = [
                    row for row in db_engine.execute(
                        '''select entity_id, as_of_date
                    from {}_results.{}_predictions
                    join model_metadata.models using (model_id)'''.format(
                            mat_type, mat_type))
                ]
                assert len(records) > 0
Example #13
0
    def test_retry_recovery(self):
        db_engine = None
        trainer = None
        port = None
        with testing.postgresql.Postgresql() as postgresql:
            port = postgresql.settings['port']
            db_engine = create_engine(postgresql.url())
            ensure_db(db_engine)
            init_engine(db_engine)
            trainer = ModelTrainer(
                project_path='econ-dev/inspections',
                experiment_hash=None,
                model_storage_engine=InMemoryModelStorageEngine(
                    project_path=''),
                db_engine=db_engine,
                model_grouper=ModelGrouper())

        # start without a database server
        # then bring it back up after the first sleep
        # use self so it doesn't go out of scope too early and shut down
        self.new_server = None

        def replace_db(arg):
            self.new_server = testing.postgresql.Postgresql(port=port)
            db_engine = create_engine(self.new_server.url())
            ensure_db(db_engine)
            init_engine(db_engine)

            # Creates a matrix entry in the matrices table with uuid from train_metadata
            MatrixFactory(matrix_uuid="1234")
            session.commit()

        with patch('time.sleep') as time_mock:
            time_mock.side_effect = replace_db
            try:
                trainer.train_models(grid_config(), dict(),
                                     sample_matrix_store())
            finally:
                if self.new_server is not None:
                    self.new_server.stop()
            assert len(time_mock.mock_calls) == 1
Example #14
0
    def filter_train_end_times(self, engine, train_end_times):
        ensure_db(engine)
        init_engine(engine)
        mg1 = ModelGroupFactory(model_group_id=1, model_type="modelType1")
        mg2 = ModelGroupFactory(model_group_id=2, model_type="modelType2")
        mg3 = ModelGroupFactory(model_group_id=3, model_type="modelType3")
        mg4 = ModelGroupFactory(model_group_id=4, model_type="modelType4")
        mg5 = ModelGroupFactory(model_group_id=5, model_type="modelType5")
        # model group 1
        ModelFactory(model_group_rel=mg1, train_end_time=datetime(2014, 1, 1))
        ModelFactory(model_group_rel=mg1, train_end_time=datetime(2015, 1, 1))
        ModelFactory(model_group_rel=mg1, train_end_time=datetime(2016, 1, 1))
        ModelFactory(model_group_rel=mg1, train_end_time=datetime(2017, 1, 1))
        # model group 2 only has one timestamps
        ModelFactory(model_group_rel=mg2, train_end_time=datetime(2014, 1, 1))
        # model group 3
        ModelFactory(model_group_rel=mg3, train_end_time=datetime(2014, 1, 1))
        ModelFactory(model_group_rel=mg3, train_end_time=datetime(2015, 1, 1))
        ModelFactory(model_group_rel=mg3, train_end_time=datetime(2016, 1, 1))
        ModelFactory(model_group_rel=mg3, train_end_time=datetime(2017, 1, 1))
        # model group 4 only has two timestamps
        ModelFactory(model_group_rel=mg4, train_end_time=datetime(2015, 1, 1))
        ModelFactory(model_group_rel=mg4, train_end_time=datetime(2016, 1, 1))
        # model group 5 only has three timestamps
        ModelFactory(model_group_rel=mg5, train_end_time=datetime(2014, 1, 1))
        ModelFactory(model_group_rel=mg5, train_end_time=datetime(2015, 1, 1))
        ModelFactory(model_group_rel=mg5, train_end_time=datetime(2016, 1, 1))

        session.commit()
        model_groups = [1, 2, 3, 4, 5]
        model_group_ids = model_groups_filter(
            train_end_times=train_end_times,
            initial_model_group_ids=model_groups,
            models_table="models",
            db_engine=engine,
        )

        return model_group_ids
Example #15
0
def test_integration():
    with testing.postgresql.Postgresql() as postgresql:
        db_engine = create_engine(postgresql.url())
        ensure_db(db_engine)
        init_engine(db_engine)

        with mock_s3():
            s3_conn = boto3.resource('s3')
            s3_conn.create_bucket(Bucket='econ-dev')
            project_path = 'econ-dev/inspections'

            # create train and test matrices
            train_matrix = pandas.DataFrame.from_dict({
                'entity_id': [1, 2],
                'feature_one': [3, 4],
                'feature_two': [5, 6],
                'label': [7, 8]
            }).set_index('entity_id')
            train_metadata = {
                'feature_start_time': datetime.date(2012, 12, 20),
                'end_time': datetime.date(2016, 12, 20),
                'label_name': 'label',
                'label_timespan': '1y',
                'feature_names': ['ft1', 'ft2'],
                'metta-uuid': '1234',
                'indices': ['entity_id'],
                'matrix_type': 'train'
            }
            # Creates a matrix entry in the matrices table with uuid from train_metadata
            MatrixFactory(matrix_uuid="1234")
            session.commit()

            train_store = InMemoryMatrixStore(train_matrix, sample_metadata())

            as_of_dates = [
                datetime.date(2016, 12, 21),
                datetime.date(2017, 1, 21)
            ]

            test_stores = [
                InMemoryMatrixStore(
                    pandas.DataFrame.from_dict({
                        'entity_id': [3],
                        'feature_one': [8],
                        'feature_two': [5],
                        'label': [5]
                    }), {
                        'label_name': 'label',
                        'label_timespan': '1y',
                        'end_time': as_of_date,
                        'metta-uuid': '1234',
                        'indices': ['entity_id'],
                        'matrix_type': 'test',
                        'as_of_date_frequency': '1month'
                    }) for as_of_date in as_of_dates
            ]

            model_storage_engine = S3ModelStorageEngine(project_path)

            experiment_hash = save_experiment_and_get_hash({}, db_engine)
            # instantiate pipeline objects
            trainer = ModelTrainer(
                project_path=project_path,
                experiment_hash=experiment_hash,
                model_storage_engine=model_storage_engine,
                db_engine=db_engine,
            )
            predictor = Predictor(project_path, model_storage_engine,
                                  db_engine)
            model_evaluator = ModelEvaluator([{
                'metrics': ['precision@'],
                'thresholds': {
                    'top_n': [5]
                }
            }], [{}], db_engine)

            # run the pipeline
            grid_config = {
                'sklearn.linear_model.LogisticRegression': {
                    'C': [0.00001, 0.0001],
                    'penalty': ['l1', 'l2'],
                    'random_state': [2193]
                }
            }
            model_ids = trainer.train_models(grid_config=grid_config,
                                             misc_db_parameters=dict(),
                                             matrix_store=train_store)

            for model_id in model_ids:
                for as_of_date, test_store in zip(as_of_dates, test_stores):
                    predictions_proba = predictor.predict(
                        model_id,
                        test_store,
                        misc_db_parameters=dict(),
                        train_matrix_columns=['feature_one', 'feature_two'])

                    model_evaluator.evaluate(
                        predictions_proba,
                        test_store,
                        model_id,
                    )

            # assert
            # 1. that the predictions table entries are present and
            # can be linked to the original models
            records = [
                row for row in db_engine.execute(
                    '''select entity_id, model_id, as_of_date
                from test_results.test_predictions
                join model_metadata.models using (model_id)
                order by 3, 2''')
            ]
            assert records == [
                (3, 1, datetime.datetime(2016, 12, 21)),
                (3, 2, datetime.datetime(2016, 12, 21)),
                (3, 3, datetime.datetime(2016, 12, 21)),
                (3, 4, datetime.datetime(2016, 12, 21)),
                (3, 1, datetime.datetime(2017, 1, 21)),
                (3, 2, datetime.datetime(2017, 1, 21)),
                (3, 3, datetime.datetime(2017, 1, 21)),
                (3, 4, datetime.datetime(2017, 1, 21)),
            ]

            # that evaluations are there
            records = [
                row for row in db_engine.execute('''
                    select model_id, evaluation_start_time, metric, parameter
                    from test_results.test_evaluations order by 2, 1''')
            ]
            assert records == [
                (1, datetime.datetime(2016, 12, 21), 'precision@', '5_abs'),
                (2, datetime.datetime(2016, 12, 21), 'precision@', '5_abs'),
                (3, datetime.datetime(2016, 12, 21), 'precision@', '5_abs'),
                (4, datetime.datetime(2016, 12, 21), 'precision@', '5_abs'),
                (1, datetime.datetime(2017, 1, 21), 'precision@', '5_abs'),
                (2, datetime.datetime(2017, 1, 21), 'precision@', '5_abs'),
                (3, datetime.datetime(2017, 1, 21), 'precision@', '5_abs'),
                (4, datetime.datetime(2017, 1, 21), 'precision@', '5_abs'),
            ]
Example #16
0
 def setup_data(self, engine):
     ensure_db(engine)
     init_engine(engine)
     ModelGroupFactory(model_group_id=1, model_type='modelType1')
     ModelGroupFactory(model_group_id=2, model_type='modelType2')
     ModelGroupFactory(model_group_id=3, model_type='modelType3')
     ModelGroupFactory(model_group_id=4, model_type='modelType4')
     ModelGroupFactory(model_group_id=5, model_type='modelType5')
     session.commit()
     distance_table = DistanceFromBestTable(db_engine=engine,
                                            models_table='models',
                                            distance_table='dist_table')
     distance_table._create()
     distance_rows = [
         # 2014: model group 1 should pass both close and min checks
         (1, 1, '2014-01-01', 'precision@', '100_abs', 0.5, 0.5, 0.0, 0.38),
         (1, 1, '2014-01-01', 'recall@', '100_abs', 0.5, 0.5, 0.0, 0.38),
         (1, 1, '2014-01-01', 'false positives@', '100_abs', 40, 30, 10,
          10),
         # 2015: model group 1 should not pass close check
         (1, 2, '2015-01-01', 'precision@', '100_abs', 0.5, 0.88, 0.38, 0.0
          ),
         (1, 2, '2015-01-01', 'recall@', '100_abs', 0.5, 0.88, 0.38, 0.0),
         (1, 2, '2015-01-01', 'false positives@', '100_abs', 40, 30, 10,
          10),
         (1, 3, '2016-01-01', 'precision@', '100_abs', 0.46, 0.46, 0.0,
          0.11),
         (1, 3, '2016-01-01', 'recall@', '100_abs', 0.46, 0.46, 0.0, 0.11),
         (1, 3, '2016-01-01', 'false positives@', '100_abs', 40, 30, 10,
          10),
         # 2014: model group 2 should not pass min check
         (2, 4, '2014-01-01', 'precision@', '100_abs', 0.39, 0.5, 0.11, 0.5
          ),
         (2, 4, '2014-01-01', 'recall@', '100_abs', 0.5, 0.5, 0.0, 0.38),
         (2, 4, '2014-01-01', 'false positives@', '100_abs', 40, 30, 10,
          10),
         # 2015: model group 2 should pass both checks
         (2, 5, '2015-01-01', 'precision@', '100_abs', 0.69, 0.88, 0.19,
          0.12),
         (2, 5, '2015-01-01', 'recall@', '100_abs', 0.69, 0.88, 0.19, 0.0),
         (2, 5, '2015-01-01', 'false positives@', '100_abs', 40, 30, 10,
          10),
         (2, 6, '2016-01-01', 'precision@', '100_abs', 0.34, 0.46, 0.12,
          0.11),
         (2, 6, '2016-01-01', 'recall@', '100_abs', 0.46, 0.46, 0.0, 0.11),
         (2, 6, '2016-01-01', 'false positives@', '100_abs', 40, 30, 10,
          10),
         # model group 3 not included in this round
         (3, 7, '2014-01-01', 'precision@', '100_abs', 0.28, 0.5, 0.22, 0.0
          ),
         (3, 7, '2014-01-01', 'recall@', '100_abs', 0.5, 0.5, 0.0, 0.38),
         (3, 7, '2014-01-01', 'false positives@', '100_abs', 40, 30, 10,
          10),
         (3, 8, '2015-01-01', 'precision@', '100_abs', 0.88, 0.88, 0.0,
          0.02),
         (3, 8, '2015-01-01', 'recall@', '100_abs', 0.5, 0.88, 0.38, 0.0),
         (3, 8, '2015-01-01', 'false positives@', '100_abs', 40, 30, 10,
          10),
         (3, 9, '2016-01-01', 'precision@', '100_abs', 0.44, 0.46, 0.02,
          0.11),
         (3, 9, '2016-01-01', 'recall@', '100_abs', 0.46, 0.46, 0.0, 0.11),
         (3, 9, '2016-01-01', 'false positives@', '100_abs', 40, 30, 10,
          10),
         # 2014: model group 4 should not pass any checks
         (4, 10, '2014-01-01', 'precision@', '100_abs', 0.29, 0.5, 0.21,
          0.21),
         (4, 10, '2014-01-01', 'recall@', '100_abs', 0.5, 0.5, 0.0, 0.38),
         (4, 10, '2014-01-01', 'false positives@', '100_abs', 40, 30, 10,
          10),
         # 2015: model group 4 should not pass close check
         (4, 11, '2015-01-01', 'precision@', '100_abs', 0.67, 0.88, 0.21,
          0.21),
         (4, 11, '2015-01-01', 'recall@', '100_abs', 0.5, 0.88, 0.38, 0.0),
         (4, 11, '2015-01-01', 'false positives@', '100_abs', 40, 30, 10,
          10),
         (4, 12, '2016-01-01', 'precision@', '100_abs', 0.25, 0.46, 0.21,
          0.21),
         (4, 12, '2016-01-01', 'recall@', '100_abs', 0.46, 0.46, 0.0, 0.11),
         (4, 12, '2016-01-01', 'false positives@', '100_abs', 40, 30, 10,
          10),
         # 2014: model group 5 should not pass because precision is good but not recall
         (5, 13, '2014-01-01', 'precision@', '100_abs', 0.5, 0.38, 0.0, 0.38
          ),
         (5, 13, '2014-01-01', 'recall@', '100_abs', 0.3, 0.5, 0.2, 0.38),
         (5, 13, '2014-01-01', 'false positives@', '100_abs', 40, 30, 10,
          10),
         # 2015: model group 5 should not pass because precision is good but not recall
         (5, 14, '2015-01-01', 'precision@', '100_abs', 0.5, 0.88, 0.38, 0.0
          ),
         (5, 14, '2015-01-01', 'recall@', '100_abs', 0.3, 0.88, 0.58, 0.0),
         (5, 14, '2015-01-01', 'false positives@', '100_abs', 40, 30, 10,
          10),
         (5, 15, '2016-01-01', 'precision@', '100_abs', 0.46, 0.46, 0.0,
          0.11),
         (5, 15, '2016-01-01', 'recall@', '100_abs', 0.3, 0.46, 0.16, 0.11),
         (5, 15, '2016-01-01', 'false positives@', '100_abs', 40, 30, 10,
          10),
         # 2014: model group 6 is failed by false positives
         (6, 16, '2014-01-01', 'precision@', '100_abs', 0.5, 0.5, 0.0, 0.38
          ),
         (6, 16, '2014-01-01', 'recall@', '100_abs', 0.5, 0.5, 0.0, 0.38),
         (6, 16, '2014-01-01', 'false positives@', '100_abs', 60, 30, 30,
          10),
         # 2015: model group 6 is failed by false positives
         (6, 17, '2015-01-01', 'precision@', '100_abs', 0.5, 0.88, 0.38, 0.0
          ),
         (6, 17, '2015-01-01', 'recall@', '100_abs', 0.5, 0.38, 0.0, 0.38),
         (6, 17, '2015-01-01', 'false positives@', '100_abs', 60, 30, 30,
          10),
         (6, 18, '2016-01-01', 'precision@', '100_abs', 0.46, 0.46, 0.0,
          0.11),
         (6, 18, '2016-01-01', 'recall@', '100_abs', 0.5, 0.5, 0.0, 0.38),
         (6, 18, '2016-01-01', 'false positives@', '100_abs', 40, 30, 10,
          10),
     ]
     for dist_row in distance_rows:
         engine.execute(
             'insert into dist_table values (%s, %s, %s, %s, %s, %s, %s, %s, %s)',
             dist_row)
     thresholder = ModelGroupThresholder(
         distance_from_best_table=distance_table,
         train_end_times=['2014-01-01', '2015-01-01'],
         initial_model_group_ids=[1, 2, 4, 5, 6],
         initial_metric_filters=self.metric_filters)
     return thresholder
Example #17
0
def test_Auditioner():
    with testing.postgresql.Postgresql() as postgresql:
        db_engine = create_engine(postgresql.url())
        ensure_db(db_engine)
        init_engine(db_engine)
        # set up data, randomly generated by the factories but conforming
        # generally to what we expect model_metadata schema data to look like

        num_model_groups = 10
        model_types = [
            'classifier type {}'.format(i) for i in range(0, num_model_groups)
        ]
        model_groups = [
            ModelGroupFactory(model_type=model_type)
            for model_type in model_types
        ]
        train_end_times = [
            datetime(2013, 1, 1),
            datetime(2014, 1, 1),
            datetime(2015, 1, 1),
            datetime(2016, 1, 1),
        ]

        models = [
            ModelFactory(model_group_rel=model_group,
                         train_end_time=train_end_time)
            for model_group in model_groups
            for train_end_time in train_end_times
        ]
        metrics = [
            ('precision@', '100_abs'),
            ('recall@', '100_abs'),
            ('precision@', '50_abs'),
            ('recall@', '50_abs'),
            ('fpr@', '10_pct'),
        ]

        class ImmediateEvalFactory(EvaluationFactory):
            evaluation_start_time = factory.LazyAttribute(
                lambda o: o.model_rel.train_end_time)

        for model in models:
            for (metric, parameter) in metrics:
                ImmediateEvalFactory(model_rel=model,
                                     metric=metric,
                                     parameter=parameter)

        session.commit()

        # define a very loose filtering that should admit all model groups
        no_filtering = [{
            'metric': 'precision@',
            'parameter': '100_abs',
            'max_from_best': 1.0,
            'threshold_value': 0.0
        }, {
            'metric': 'recall@',
            'parameter': '100_abs',
            'max_from_best': 1.0,
            'threshold_value': 0.0
        }]
        model_group_ids = [mg.model_group_id for mg in model_groups]
        auditioner = Auditioner(
            db_engine,
            model_group_ids,
            train_end_times,
            no_filtering,
        )
        assert len(auditioner.thresholded_model_group_ids) == num_model_groups
        auditioner.plot_model_groups()

        # here, we pick thresholding rules that should definitely remove
        # all model groups from contention because they are too strict.
        remove_all = [{
            'metric': 'precision@',
            'parameter': '100_abs',
            'max_from_best': 0.0,
            'threshold_value': 1.1
        }, {
            'metric': 'recall@',
            'parameter': '100_abs',
            'max_from_best': 0.0,
            'threshold_value': 1.1
        }]

        auditioner.update_metric_filters(new_filters=remove_all)
        assert len(auditioner.thresholded_model_group_ids) == 0

        # pass the argument instead and remove all model groups
        auditioner.set_one_metric_filter(metric='precision@',
                                         parameter='100_abs',
                                         max_from_best=0.0,
                                         threshold_value=1.1)
        assert len(auditioner.thresholded_model_group_ids) == 0

        # one potential place for bugs would be when we pull back the rules
        # for being too restrictive. we want to make sure that the original list is
        # always used for thresholding, or else such a move would be impossible
        auditioner.update_metric_filters(new_filters=no_filtering)
        assert len(auditioner.thresholded_model_group_ids) == num_model_groups

        # pass the argument instead and let all model groups pass
        auditioner.set_one_metric_filter(metric='precision@',
                                         parameter='100_abs',
                                         max_from_best=1.0,
                                         threshold_value=0.0)
        assert len(auditioner.thresholded_model_group_ids) == num_model_groups

        # now, we want to take this partially thresholded list and run it through
        # a grid of selection rules, meant to pick winners by a variety of user-defined
        # criteria
        rule_grid = [{
            'shared_parameters': [
                {
                    'metric': 'precision@',
                    'parameter': '100_abs'
                },
                {
                    'metric': 'recall@',
                    'parameter': '100_abs'
                },
            ],
            'selection_rules': [{
                'name': 'most_frequent_best_dist',
                'dist_from_best_case': [0.1, 0.2, 0.3],
                'n': 1
            }, {
                'name': 'best_current_value',
                'n': 1
            }]
        }, {
            'shared_parameters': [
                {
                    'metric1': 'precision@',
                    'parameter1': '100_abs'
                },
            ],
            'selection_rules': [
                {
                    'name': 'best_average_two_metrics',
                    'metric2': ['recall@'],
                    'parameter2': ['100_abs'],
                    'metric1_weight': [0.4, 0.5, 0.6],
                    'n': 1
                },
            ]
        }]
        auditioner.register_selection_rule_grid(rule_grid, plot=False)
        final_model_group_ids = auditioner.selection_rule_model_group_ids

        # we expect the result to be a mapping of selection rule name to model group id
        assert isinstance(final_model_group_ids, dict)

        # we expect that there is one winner for each selection rule
        assert sorted(final_model_group_ids.keys()) == \
            sorted([rule.descriptive_name for rule in auditioner.selection_rules])

        # we expect that the results written to the yaml file are the
        # chosen model groups and their rules
        # however because the source data is randomly generated we could have a
        # different list on consecutive runs
        # and don't want to introduce non-determinism to the test
        with tempfile.NamedTemporaryFile() as tf:
            auditioner.write_tyra_config(tf.name)
            assert sorted(yaml.load(tf)['selection_rule_model_groups'].keys()) == \
                sorted(final_model_group_ids.keys())
def test_DistanceFromBestTable():
    with testing.postgresql.Postgresql() as postgresql:
        engine = create_engine(postgresql.url())
        ensure_db(engine)
        init_engine(engine)
        model_groups = {
            "stable": ModelGroupFactory(model_type="myStableClassifier"),
            "bad": ModelGroupFactory(model_type="myBadClassifier"),
            "spiky": ModelGroupFactory(model_type="mySpikeClassifier"),
        }

        class StableModelFactory(ModelFactory):
            model_group_rel = model_groups["stable"]

        class BadModelFactory(ModelFactory):
            model_group_rel = model_groups["bad"]

        class SpikyModelFactory(ModelFactory):
            model_group_rel = model_groups["spiky"]

        models = {
            "stable_3y_ago": StableModelFactory(train_end_time="2014-01-01"),
            "stable_2y_ago": StableModelFactory(train_end_time="2015-01-01"),
            "stable_1y_ago": StableModelFactory(train_end_time="2016-01-01"),
            "bad_3y_ago": BadModelFactory(train_end_time="2014-01-01"),
            "bad_2y_ago": BadModelFactory(train_end_time="2015-01-01"),
            "bad_1y_ago": BadModelFactory(train_end_time="2016-01-01"),
            "spiky_3y_ago": SpikyModelFactory(train_end_time="2014-01-01"),
            "spiky_2y_ago": SpikyModelFactory(train_end_time="2015-01-01"),
            "spiky_1y_ago": SpikyModelFactory(train_end_time="2016-01-01"),
        }

        class ImmediateEvalFactory(EvaluationFactory):
            evaluation_start_time = factory.LazyAttribute(
                lambda o: o.model_rel.train_end_time)
            evaluation_end_time = factory.LazyAttribute(
                lambda o: _sql_add_days(o.model_rel.train_end_time, 1))

        class MonthOutEvalFactory(EvaluationFactory):
            evaluation_start_time = factory.LazyAttribute(
                lambda o: _sql_add_days(o.model_rel.train_end_time, 31))
            evaluation_end_time = factory.LazyAttribute(
                lambda o: _sql_add_days(o.model_rel.train_end_time, 32))

        class Precision100Factory(ImmediateEvalFactory):
            metric = "precision@"
            parameter = "100_abs"

        class Precision100FactoryMonthOut(MonthOutEvalFactory):
            metric = "precision@"
            parameter = "100_abs"

        class Recall100Factory(ImmediateEvalFactory):
            metric = "recall@"
            parameter = "100_abs"

        class Recall100FactoryMonthOut(MonthOutEvalFactory):
            metric = "recall@"
            parameter = "100_abs"

        for (add_val, PrecFac, RecFac) in (
            (0, Precision100Factory, Recall100Factory),
            (-0.15, Precision100FactoryMonthOut, Recall100FactoryMonthOut),
        ):
            PrecFac(model_rel=models["stable_3y_ago"], value=0.6 + add_val)
            PrecFac(model_rel=models["stable_2y_ago"], value=0.57 + add_val)
            PrecFac(model_rel=models["stable_1y_ago"], value=0.59 + add_val)
            PrecFac(model_rel=models["bad_3y_ago"], value=0.4 + add_val)
            PrecFac(model_rel=models["bad_2y_ago"], value=0.39 + add_val)
            PrecFac(model_rel=models["bad_1y_ago"], value=0.43 + add_val)
            PrecFac(model_rel=models["spiky_3y_ago"], value=0.8 + add_val)
            PrecFac(model_rel=models["spiky_2y_ago"], value=0.4 + add_val)
            PrecFac(model_rel=models["spiky_1y_ago"], value=0.4 + add_val)
            RecFac(model_rel=models["stable_3y_ago"], value=0.55 + add_val)
            RecFac(model_rel=models["stable_2y_ago"], value=0.56 + add_val)
            RecFac(model_rel=models["stable_1y_ago"], value=0.55 + add_val)
            RecFac(model_rel=models["bad_3y_ago"], value=0.35 + add_val)
            RecFac(model_rel=models["bad_2y_ago"], value=0.34 + add_val)
            RecFac(model_rel=models["bad_1y_ago"], value=0.36 + add_val)
            RecFac(model_rel=models["spiky_3y_ago"], value=0.35 + add_val)
            RecFac(model_rel=models["spiky_2y_ago"], value=0.8 + add_val)
            RecFac(model_rel=models["spiky_1y_ago"], value=0.36 + add_val)
        session.commit()
        distance_table = DistanceFromBestTable(db_engine=engine,
                                               models_table="models",
                                               distance_table="dist_table")
        metrics = [
            {
                "metric": "precision@",
                "parameter": "100_abs"
            },
            {
                "metric": "recall@",
                "parameter": "100_abs"
            },
        ]
        model_group_ids = [mg.model_group_id for mg in model_groups.values()]
        distance_table.create_and_populate(
            model_group_ids, ["2014-01-01", "2015-01-01", "2016-01-01"],
            metrics)

        # get an ordered list of the models/groups for a particular metric/time
        query = """
            select model_id, raw_value, dist_from_best_case, dist_from_best_case_next_time
            from dist_table where metric = %s and parameter = %s and train_end_time = %s
            order by dist_from_best_case
        """

        prec_3y_ago = engine.execute(query,
                                     ("precision@", "100_abs", "2014-01-01"))
        assert [row for row in prec_3y_ago] == [
            (models["spiky_3y_ago"].model_id, 0.8, 0, 0.17),
            (models["stable_3y_ago"].model_id, 0.6, 0.2, 0),
            (models["bad_3y_ago"].model_id, 0.4, 0.4, 0.18),
        ]

        recall_2y_ago = engine.execute(query,
                                       ("recall@", "100_abs", "2015-01-01"))
        assert [row for row in recall_2y_ago] == [
            (models["spiky_2y_ago"].model_id, 0.8, 0, 0.19),
            (models["stable_2y_ago"].model_id, 0.56, 0.24, 0),
            (models["bad_2y_ago"].model_id, 0.34, 0.46, 0.19),
        ]

        assert distance_table.observed_bounds == {
            ("precision@", "100_abs"): (0.39, 0.8),
            ("recall@", "100_abs"): (0.34, 0.8),
        }
Example #19
0
def test_model_trainer(sample_matrix_store, grid_config):
    with testing.postgresql.Postgresql() as postgresql:
        db_engine = create_engine(postgresql.url())
        ensure_db(db_engine)
        init_engine(db_engine)

        with mock_s3():
            s3_conn = boto3.resource('s3')
            s3_conn.create_bucket(Bucket='econ-dev')

            # Creates a matrix entry in the matrices table with uuid from metadata above
            MatrixFactory(matrix_uuid="1234")
            session.commit()
            project_path = 'econ-dev/inspections'
            model_storage_engine = S3ModelStorageEngine(project_path)
            trainer = ModelTrainer(
                project_path=project_path,
                experiment_hash=None,
                model_storage_engine=model_storage_engine,
                model_grouper=ModelGrouper(),
                db_engine=db_engine,
            )
            model_ids = trainer.train_models(grid_config=grid_config,
                                             misc_db_parameters=dict(),
                                             matrix_store=sample_matrix_store)

            # assert
            # 1. that the models and feature importances table entries are present
            records = [
                row for row in db_engine.execute(
                    'select * from train_results.feature_importances')
            ]
            assert len(records) == 4 * 2  # maybe exclude entity_id? yes

            records = [
                row for row in db_engine.execute(
                    'select model_hash from model_metadata.models')
            ]
            assert len(records) == 4
            hashes = [row[0] for row in records]

            # 2. that the model groups are distinct
            records = [
                row for row in db_engine.execute(
                    'select distinct model_group_id from model_metadata.models'
                )
            ]
            assert len(records) == 4

            # 3. that the model sizes are saved in the table and all are < 1 kB
            records = [
                row for row in db_engine.execute(
                    'select model_size from model_metadata.models')
            ]
            assert len(records) == 4
            for i in records:
                size = i[0]
                assert size < 1

            # 4. that all four models are cached
            model_pickles = [
                model_storage_engine.get_store(model_hash).load()
                for model_hash in hashes
            ]
            assert len(model_pickles) == 4
            assert len([x for x in model_pickles if x is not None]) == 4

            # 5. that their results can have predictions made on it
            test_matrix = pandas.DataFrame.from_dict({
                'entity_id': [3, 4],
                'feature_one': [4, 4],
                'feature_two': [6, 5],
            })

            test_matrix = InMemoryMatrixStore(matrix=test_matrix, metadata=sample_metadata())\
                .matrix

            for model_pickle in model_pickles:
                predictions = model_pickle.predict(test_matrix)
                assert len(predictions) == 2

            # 6. when run again, same models are returned
            new_model_ids = trainer.train_models(
                grid_config=grid_config,
                misc_db_parameters=dict(),
                matrix_store=sample_matrix_store)
            assert len([
                row for row in db_engine.execute(
                    'select model_hash from model_metadata.models')
            ]) == 4
            assert model_ids == new_model_ids

            # 7. if replace is set, update non-unique attributes and feature importances
            max_batch_run_time = [
                row[0] for row in db_engine.execute(
                    'select max(batch_run_time) from model_metadata.models')
            ][0]
            trainer = ModelTrainer(
                project_path=project_path,
                experiment_hash=None,
                model_storage_engine=model_storage_engine,
                model_grouper=ModelGrouper(
                    model_group_keys=['label_name', 'label_timespan']),
                db_engine=db_engine,
                replace=True)
            new_model_ids = trainer.train_models(
                grid_config=grid_config,
                misc_db_parameters=dict(),
                matrix_store=sample_matrix_store,
            )
            assert model_ids == new_model_ids
            assert [
                row['model_id'] for row in db_engine.execute(
                    'select model_id from model_metadata.models order by 1 asc'
                )
            ] == model_ids
            new_max_batch_run_time = [
                row[0] for row in db_engine.execute(
                    'select max(batch_run_time) from model_metadata.models')
            ][0]
            assert new_max_batch_run_time > max_batch_run_time

            records = [
                row for row in db_engine.execute(
                    'select * from train_results.feature_importances')
            ]
            assert len(records) == 4 * 2  # maybe exclude entity_id? yes

            # 8. if the cache is missing but the metadata is still there, reuse the metadata
            for row in db_engine.execute(
                    'select model_hash from model_metadata.models'):
                model_storage_engine.get_store(row[0]).delete()
            new_model_ids = trainer.train_models(
                grid_config=grid_config,
                misc_db_parameters=dict(),
                matrix_store=sample_matrix_store)
            assert model_ids == sorted(new_model_ids)

            # 9. that the generator interface works the same way
            new_model_ids = trainer.generate_trained_models(
                grid_config=grid_config,
                misc_db_parameters=dict(),
                matrix_store=sample_matrix_store)
            assert model_ids == \
                sorted([model_id for model_id in new_model_ids])
Example #20
0
def db_engine_with_results_schema(db_engine):
    ensure_db(db_engine)
    init_engine(db_engine)
    yield db_engine
Example #21
0
def test_PreAudition():
    with testing.postgresql.Postgresql() as postgresql:
        db_engine = create_engine(postgresql.url())
        ensure_db(db_engine)
        init_engine(db_engine)
        # set up data, randomly generated by the factories but conforming
        # generally to what we expect results schema data to look like
        num_model_groups = 10
        model_types = [
            'classifier type {}'.format(i) for i in range(0, num_model_groups)
        ]
        model_configs = [{
            'label_definition': 'label_1'
        } if i % 2 == 0 else {
            'label_definition': 'label_2'
        } for i in range(0, num_model_groups)]
        model_groups = [
            ModelGroupFactory(model_type=model_type, model_config=model_config)
            for model_type, model_config in zip(model_types, model_configs)
        ]
        train_end_times = [
            datetime(2013, 1, 1),
            datetime(2013, 7, 1),
            datetime(2014, 1, 1),
            datetime(2014, 7, 1),
            datetime(2015, 1, 1),
            datetime(2015, 7, 1),
            datetime(2016, 7, 1),
            datetime(2016, 1, 1),
        ]
        models = [
            ModelFactory(model_group_rel=model_group,
                         train_end_time=train_end_time)
            for model_group in model_groups
            for train_end_time in train_end_times
        ]
        metrics = [
            ('precision@', '100_abs'),
            ('recall@', '100_abs'),
            ('precision@', '50_abs'),
            ('recall@', '50_abs'),
            ('fpr@', '10_pct'),
        ]

        class ImmediateEvalFactory(EvaluationFactory):
            evaluation_start_time = factory.LazyAttribute(
                lambda o: o.model_rel.train_end_time)

        for model in models:
            for (metric, parameter) in metrics:
                ImmediateEvalFactory(model_rel=model,
                                     metric=metric,
                                     parameter=parameter)

        session.commit()

        pre_aud = PreAudition(db_engine)

        # Expect the number of model groups with label_1
        assert len(pre_aud.get_model_groups_from_label("label_1")) == \
            sum([x['label_definition']=='label_1' for x in model_configs])

        # Expect the number of model groups with certain experiment_hash
        experiment_hash = list(
            pd.read_sql("SELECT experiment_hash FROM results.models limit 1",
                        con=db_engine)['experiment_hash'])[0]
        assert len(
            pre_aud.get_model_groups_from_experiment(experiment_hash)) == 1

        # Expect the number of model groups for customs SQL
        query = """
            SELECT DISTINCT(model_group_id)
            FROM results.models
            WHERE train_end_time >= '2013-01-01'
            AND experiment_hash = '{}'
        """.format(experiment_hash)
        assert len(pre_aud.get_model_groups(query)) == 1

        # Expect the number of train_end_times after 2014-01-01
        assert len(pre_aud.get_train_end_times(after='2014-01-01')) == 6

        query = """
            SELECT DISTINCT train_end_time
            FROM results.models
            WHERE model_group_id IN ({})
                AND train_end_time >= '2014-01-01'
            ORDER BY train_end_time
            """.format(', '.join(map(str, pre_aud.model_groups)))

        assert len(pre_aud.get_train_end_times(query=query)) == 6
Example #22
0
def test_predictor_retrieve():
    with testing.postgresql.Postgresql() as postgresql:
        db_engine = create_engine(postgresql.url())
        ensure_db(db_engine)
        init_engine(db_engine)

        project_path = 'econ-dev/inspections'
        model_storage_engine = InMemoryModelStorageEngine(project_path)

        _, model_id = \
            fake_trained_model(project_path, model_storage_engine, db_engine, train_matrix_uuid='1234')

        predictor = Predictor(project_path,
                              model_storage_engine,
                              db_engine,
                              replace=False)

        dayone = datetime.date(2011, 1,
                               1).strftime(predictor.expected_matrix_ts_format)
        daytwo = datetime.date(2011, 1,
                               2).strftime(predictor.expected_matrix_ts_format)

        # create prediction set
        matrix_data = {
            'entity_id': [1, 2, 1, 2],
            'as_of_date': [dayone, dayone, daytwo, daytwo],
            'feature_one': [3, 4, 5, 6],
            'feature_two': [5, 6, 7, 8],
            'label': [7, 8, 8, 7]
        }
        matrix = pandas.DataFrame.from_dict(matrix_data)\
            .set_index(['entity_id', 'as_of_date'])
        metadata = {
            'label_name': 'label',
            'end_time': AS_OF_DATE,
            'label_timespan': '3month',
            'metta-uuid': '1234',
            'indices': ['entity_id', 'as_of_date'],
            'matrix_type': 'test'
        }

        matrix_store = InMemoryMatrixStore(matrix, metadata)

        predict_proba = predictor.predict(
            model_id,
            matrix_store,
            misc_db_parameters=dict(),
            train_matrix_columns=['feature_one', 'feature_two'])

        # When run again, the predictions retrieved from the database
        # should match.
        #
        # Some trickiness here. Let's explain:
        #
        # If we are not careful, retrieving predictions from the database and
        # presenting them as a numpy array can result in a bad ordering,
        # since the given matrix may not be 'ordered' by some criteria
        # that can be easily represented by an ORDER BY clause.
        #
        # It will sometimes work, because without ORDER BY you will get
        # it back in the table's physical order, which unless something has
        # happened to the table will be the order you inserted it,
        # which could very well be the order in the matrix.
        # So it's not a bug that would necessarily immediately show itself,
        # but when it does go wrong your scores will be garbage.
        #
        # So we simulate a table order mutation that can happen over time:
        # Remove the first row and put it at the end.
        # If the Predictor doesn't explicitly reorder the results, this will fail
        # Only running on TestPrediction because TrainPrediction behaves the exact same way
        reorder_session = sessionmaker(bind=db_engine)()
        obj = reorder_session.query(TestPrediction).first()
        reorder_session.delete(obj)
        reorder_session.commit()

        make_transient(obj)
        reorder_session = sessionmaker(bind=db_engine)()
        reorder_session.add(obj)
        reorder_session.commit()

        predictor.load_model = Mock()
        new_predict_proba = predictor.predict(
            model_id,
            matrix_store,
            misc_db_parameters=dict(),
            train_matrix_columns=['feature_one', 'feature_two'])
        assert_array_equal(new_predict_proba, predict_proba)
        assert not predictor.load_model.called
Example #23
0
def create_sample_distance_table(engine):
    ensure_db(engine)
    init_engine(engine)
    model_groups = {
        'stable': ModelGroupFactory(model_type='myStableClassifier'),
        'spiky': ModelGroupFactory(model_type='mySpikeClassifier'),
    }

    class StableModelFactory(ModelFactory):
        model_group_rel = model_groups['stable']

    class SpikyModelFactory(ModelFactory):
        model_group_rel = model_groups['spiky']

    models = {
        'stable_3y_ago': StableModelFactory(train_end_time='2014-01-01'),
        'stable_2y_ago': StableModelFactory(train_end_time='2015-01-01'),
        'stable_1y_ago': StableModelFactory(train_end_time='2016-01-01'),
        'spiky_3y_ago': SpikyModelFactory(train_end_time='2014-01-01'),
        'spiky_2y_ago': SpikyModelFactory(train_end_time='2015-01-01'),
        'spiky_1y_ago': SpikyModelFactory(train_end_time='2016-01-01'),
    }
    session.commit()
    distance_table = DistanceFromBestTable(db_engine=engine,
                                           models_table='models',
                                           distance_table='dist_table')
    distance_table._create()
    stable_grp = model_groups['stable'].model_group_id
    spiky_grp = model_groups['spiky'].model_group_id
    stable_3y_id = models['stable_3y_ago'].model_id
    stable_3y_end = models['stable_3y_ago'].train_end_time
    stable_2y_id = models['stable_2y_ago'].model_id
    stable_2y_end = models['stable_2y_ago'].train_end_time
    stable_1y_id = models['stable_1y_ago'].model_id
    stable_1y_end = models['stable_1y_ago'].train_end_time
    spiky_3y_id = models['spiky_3y_ago'].model_id
    spiky_3y_end = models['spiky_3y_ago'].train_end_time
    spiky_2y_id = models['spiky_2y_ago'].model_id
    spiky_2y_end = models['spiky_2y_ago'].train_end_time
    spiky_1y_id = models['spiky_1y_ago'].model_id
    spiky_1y_end = models['spiky_1y_ago'].train_end_time
    distance_rows = [
        (stable_grp, stable_3y_id, stable_3y_end, 'precision@', '100_abs', 0.5,
         0.6, 0.1, 0.5, 0.15),
        (stable_grp, stable_2y_id, stable_2y_end, 'precision@', '100_abs', 0.5,
         0.84, 0.34, 0.5, 0.18),
        (stable_grp, stable_1y_id, stable_1y_end, 'precision@', '100_abs',
         0.46, 0.67, 0.21, 0.5, 0.11),
        (spiky_grp, spiky_3y_id, spiky_3y_end, 'precision@', '100_abs', 0.45,
         0.6, 0.15, 0.5, 0.19),
        (spiky_grp, spiky_2y_id, spiky_2y_end, 'precision@', '100_abs', 0.84,
         0.84, 0.0, 0.5, 0.3),
        (spiky_grp, spiky_1y_id, spiky_1y_end, 'precision@', '100_abs', 0.45,
         0.67, 0.22, 0.5, 0.12),
        (stable_grp, stable_3y_id, stable_3y_end, 'recall@', '100_abs', 0.4,
         0.4, 0.0, 0.4, 0.0),
        (stable_grp, stable_2y_id, stable_2y_end, 'recall@', '100_abs', 0.5,
         0.5, 0.0, 0.5, 0.0),
        (stable_grp, stable_1y_id, stable_1y_end, 'recall@', '100_abs', 0.6,
         0.6, 0.0, 0.6, 0.0),
        (spiky_grp, spiky_3y_id, spiky_3y_end, 'recall@', '100_abs', 0.65,
         0.65, 0.0, 0.65, 0.0),
        (spiky_grp, spiky_2y_id, spiky_2y_end, 'recall@', '100_abs', 0.55,
         0.55, 0.0, 0.55, 0.0),
        (spiky_grp, spiky_1y_id, spiky_1y_end, 'recall@', '100_abs', 0.45,
         0.45, 0.0, 0.45, 0.0),
    ]
    for dist_row in distance_rows:
        engine.execute(
            'insert into dist_table values (%s, %s, %s, %s, %s, %s, %s, %s, %s, %s)',
            dist_row)
    return distance_table, model_groups
Example #24
0
def test_DistanceFromBestTable():
    with testing.postgresql.Postgresql() as postgresql:
        engine = create_engine(postgresql.url())
        ensure_db(engine)
        init_engine(engine)
        model_groups = {
            'stable': ModelGroupFactory(model_type='myStableClassifier'),
            'bad': ModelGroupFactory(model_type='myBadClassifier'),
            'spiky': ModelGroupFactory(model_type='mySpikeClassifier'),
        }

        class StableModelFactory(ModelFactory):
            model_group_rel = model_groups['stable']

        class BadModelFactory(ModelFactory):
            model_group_rel = model_groups['bad']

        class SpikyModelFactory(ModelFactory):
            model_group_rel = model_groups['spiky']

        models = {
            'stable_3y_ago': StableModelFactory(train_end_time='2014-01-01'),
            'stable_2y_ago': StableModelFactory(train_end_time='2015-01-01'),
            'stable_1y_ago': StableModelFactory(train_end_time='2016-01-01'),
            'bad_3y_ago': BadModelFactory(train_end_time='2014-01-01'),
            'bad_2y_ago': BadModelFactory(train_end_time='2015-01-01'),
            'bad_1y_ago': BadModelFactory(train_end_time='2016-01-01'),
            'spiky_3y_ago': SpikyModelFactory(train_end_time='2014-01-01'),
            'spiky_2y_ago': SpikyModelFactory(train_end_time='2015-01-01'),
            'spiky_1y_ago': SpikyModelFactory(train_end_time='2016-01-01'),
        }

        class ImmediateEvalFactory(EvaluationFactory):
            evaluation_start_time = factory.LazyAttribute(
                lambda o: o.model_rel.train_end_time)
            evaluation_end_time = factory.LazyAttribute(
                lambda o: _sql_add_days(o.model_rel.train_end_time, 1))

        class MonthOutEvalFactory(EvaluationFactory):
            evaluation_start_time = factory.LazyAttribute(
                lambda o: _sql_add_days(o.model_rel.train_end_time, 31))
            evaluation_end_time = factory.LazyAttribute(
                lambda o: _sql_add_days(o.model_rel.train_end_time, 32))

        class Precision100Factory(ImmediateEvalFactory):
            metric = 'precision@'
            parameter = '100_abs'

        class Precision100FactoryMonthOut(MonthOutEvalFactory):
            metric = 'precision@'
            parameter = '100_abs'

        class Recall100Factory(ImmediateEvalFactory):
            metric = 'recall@'
            parameter = '100_abs'

        class Recall100FactoryMonthOut(MonthOutEvalFactory):
            metric = 'recall@'
            parameter = '100_abs'

        for (add_val, PrecFac, RecFac) in ((0, Precision100Factory,
                                            Recall100Factory),
                                           (-0.15, Precision100FactoryMonthOut,
                                            Recall100FactoryMonthOut)):
            PrecFac(model_rel=models['stable_3y_ago'], value=0.6 + add_val)
            PrecFac(model_rel=models['stable_2y_ago'], value=0.57 + add_val)
            PrecFac(model_rel=models['stable_1y_ago'], value=0.59 + add_val)
            PrecFac(model_rel=models['bad_3y_ago'], value=0.4 + add_val)
            PrecFac(model_rel=models['bad_2y_ago'], value=0.39 + add_val)
            PrecFac(model_rel=models['bad_1y_ago'], value=0.43 + add_val)
            PrecFac(model_rel=models['spiky_3y_ago'], value=0.8 + add_val)
            PrecFac(model_rel=models['spiky_2y_ago'], value=0.4 + add_val)
            PrecFac(model_rel=models['spiky_1y_ago'], value=0.4 + add_val)
            RecFac(model_rel=models['stable_3y_ago'], value=0.55 + add_val)
            RecFac(model_rel=models['stable_2y_ago'], value=0.56 + add_val)
            RecFac(model_rel=models['stable_1y_ago'], value=0.55 + add_val)
            RecFac(model_rel=models['bad_3y_ago'], value=0.35 + add_val)
            RecFac(model_rel=models['bad_2y_ago'], value=0.34 + add_val)
            RecFac(model_rel=models['bad_1y_ago'], value=0.36 + add_val)
            RecFac(model_rel=models['spiky_3y_ago'], value=0.35 + add_val)
            RecFac(model_rel=models['spiky_2y_ago'], value=0.8 + add_val)
            RecFac(model_rel=models['spiky_1y_ago'], value=0.36 + add_val)
        session.commit()
        distance_table = DistanceFromBestTable(db_engine=engine,
                                               models_table='models',
                                               distance_table='dist_table')
        metrics = [{
            'metric': 'precision@',
            'parameter': '100_abs'
        }, {
            'metric': 'recall@',
            'parameter': '100_abs'
        }]
        model_group_ids = [mg.model_group_id for mg in model_groups.values()]
        distance_table.create_and_populate(
            model_group_ids, ['2014-01-01', '2015-01-01', '2016-01-01'],
            metrics)

        # get an ordered list of the models/groups for a particular metric/time
        query = '''
            select model_id, raw_value, dist_from_best_case, dist_from_best_case_next_time
            from dist_table where metric = %s and parameter = %s and train_end_time = %s
            order by dist_from_best_case
        '''

        prec_3y_ago = engine.execute(query,
                                     ('precision@', '100_abs', '2014-01-01'))
        assert [row for row in prec_3y_ago] == [
            (models['spiky_3y_ago'].model_id, 0.8, 0, 0.17),
            (models['stable_3y_ago'].model_id, 0.6, 0.2, 0),
            (models['bad_3y_ago'].model_id, 0.4, 0.4, 0.18),
        ]

        recall_2y_ago = engine.execute(query,
                                       ('recall@', '100_abs', '2015-01-01'))
        assert [row for row in recall_2y_ago] == [
            (models['spiky_2y_ago'].model_id, 0.8, 0, 0.19),
            (models['stable_2y_ago'].model_id, 0.56, 0.24, 0),
            (models['bad_2y_ago'].model_id, 0.34, 0.46, 0.19),
        ]

        assert distance_table.observed_bounds == {
            ('precision@', '100_abs'): (0.39, 0.8),
            ('recall@', '100_abs'): (0.34, 0.8),
        }
Example #25
0
def test_predictor():
    with testing.postgresql.Postgresql() as postgresql:
        db_engine = create_engine(postgresql.url())
        ensure_db(db_engine)
        init_engine(db_engine)

        with mock_s3():
            s3_conn = boto3.resource('s3')
            s3_conn.create_bucket(Bucket='econ-dev')
            project_path = 'econ-dev/inspections'
            model_storage_engine = S3ModelStorageEngine(project_path)

            _, model_id = \
                fake_trained_model(project_path, model_storage_engine, db_engine, train_matrix_uuid='1234')

            predictor = Predictor(project_path, model_storage_engine,
                                  db_engine)

            # create prediction set
            matrix = pandas.DataFrame.from_dict({
                'entity_id': [1, 2],
                'feature_one': [3, 4],
                'feature_two': [5, 6],
                'label': [7, 8]
            }).set_index('entity_id')

            metadata = {
                'label_name': 'label',
                'end_time': AS_OF_DATE,
                'label_timespan': '3month',
                'metta-uuid': '1234',
                'indices': ['entity_id'],
            }

            train_matrix_columns = ['feature_one', 'feature_two']

            # Runs the same test for training and testing predictions
            for mat_type in ("train", "test"):
                # Create the matrix to be tested and store in db
                metadata['matrix_type'] = mat_type

                matrix_store = InMemoryMatrixStore(matrix, metadata)

                # Note, the first time 'matrix' is used, the label column is popped.
                # It must be added back in to 'matrix' to create another matrix_store.
                matrix['label'] = [7, 8]

                predict_proba = predictor.predict(
                    model_id,
                    matrix_store,
                    misc_db_parameters=dict(),
                    train_matrix_columns=train_matrix_columns)

                # assert
                # 1. that the returned predictions are of the desired length
                assert len(predict_proba) == 2

                # 2. that the predictions table entries are present and
                # can be linked to the original models
                records = [
                    row for row in db_engine.execute(
                        '''select entity_id, as_of_date
                    from {}_results.{}_predictions
                    join model_metadata.models using (model_id)'''.format(
                            mat_type, mat_type))
                ]
                assert len(records) == 2

                # 3. that the contained as_of_dates match what we sent in
                for record in records:
                    assert record[1].date() == AS_OF_DATE

                # 4. that the entity ids match the given dataset
                assert sorted([record[0] for record in records]) == [1, 2]

            # 5. running with same model_id, different as of date
            # then with same as of date only replaces the records
            # with the same date
            new_matrix = pandas.DataFrame.from_dict({
                'entity_id': [1, 2],
                'feature_one': [3, 4],
                'feature_two': [5, 6],
                'label': [7, 8]
            }).set_index('entity_id')
            new_metadata = {
                'label_name': 'label',
                'end_time': AS_OF_DATE + datetime.timedelta(days=1),
                'label_timespan': '3month',
                'metta-uuid': '1234',
                'indices': ['entity_id'],
            }

            # Runs the same test for training and testing predictions
            for mat_type in ("train", "test"):

                # Create the matrix to be tested and store in db
                new_metadata['matrix_type'] = mat_type

                new_matrix_store = InMemoryMatrixStore(new_matrix,
                                                       new_metadata)

                # Adding 'label' column back into new_matrix
                new_matrix['label'] = [7, 8]

                predictor.predict(model_id,
                                  new_matrix_store,
                                  misc_db_parameters=dict(),
                                  train_matrix_columns=train_matrix_columns)
                predictor.predict(model_id,
                                  matrix_store,
                                  misc_db_parameters=dict(),
                                  train_matrix_columns=train_matrix_columns)
                records = [
                    row for row in db_engine.execute(
                        '''select entity_id, as_of_date
                    from {}_results.{}_predictions
                    join model_metadata.models using (model_id)'''.format(
                            mat_type, mat_type))
                ]
                assert len(records) == 4

            # 6. That we can delete the model when done prediction on it
            predictor.delete_model(model_id)
            assert predictor.load_model(model_id) == None
Example #26
0
def test_predictor_composite_index():
    with testing.postgresql.Postgresql() as postgresql:
        db_engine = create_engine(postgresql.url())
        ensure_db(db_engine)
        init_engine(db_engine)

        project_path = 'econ-dev/inspections'
        model_storage_engine = InMemoryModelStorageEngine(project_path)

        _, model_id = \
            fake_trained_model(project_path, model_storage_engine, db_engine, train_matrix_uuid='1234')

        predictor = Predictor(project_path, model_storage_engine, db_engine)

        dayone = datetime.datetime(2011, 1, 1)
        daytwo = datetime.datetime(2011, 1, 2)

        # create prediction set
        matrix = pandas.DataFrame.from_dict({
            'entity_id': [1, 2, 1, 2],
            'as_of_date': [dayone, dayone, daytwo, daytwo],
            'feature_one': [3, 4, 5, 6],
            'feature_two': [5, 6, 7, 8],
            'label': [7, 8, 8, 7]
        }).set_index(['entity_id', 'as_of_date'])
        metadata = {
            'label_name': 'label',
            'end_time': AS_OF_DATE,
            'label_timespan': '3month',
            'metta-uuid': '1234',
            'indices': ['entity_id', 'as_of_date'],
        }

        # Runs the same test for training and testing predictions
        for mat_type in ("train", "test"):

            # Create the matrix to be tested and store in db
            metadata['matrix_type'] = mat_type
            matrix_store = InMemoryMatrixStore(matrix, metadata)

            # Adding 'label' column back into matrix
            matrix['label'] = [7, 8, 8, 7]

            predict_proba = predictor.predict(
                model_id,
                matrix_store,
                misc_db_parameters=dict(),
                train_matrix_columns=['feature_one', 'feature_two'])

            # assert
            # 1. that the returned predictions are of the desired length
            assert len(predict_proba) == 4

            # 2. that the predictions table entries are present and
            # can be linked to the original models
            records = [
                row
                for row in db_engine.execute('''select entity_id, as_of_date
                from {}_results.{}_predictions
                join model_metadata.models using (model_id)'''.format(
                    mat_type, mat_type))
            ]
            assert len(records) == 4
Example #27
0
 def replace_db(arg):
     self.new_server = testing.postgresql.Postgresql(port=port)
     db_engine = create_engine(self.new_server.url())
     ensure_db(db_engine)
     init_engine(db_engine)
     get_matrix_store(project_storage)
Example #28
0
def test_Auditioner():
    with testing.postgresql.Postgresql() as postgresql:
        db_engine = create_engine(postgresql.url())
        ensure_db(db_engine)
        init_engine(db_engine)
        # set up data, randomly generated by the factories but conforming
        # generally to what we expect triage_metadata schema data to look like

        num_model_groups = 10
        model_types = [
            "classifier type {}".format(i) for i in range(0, num_model_groups)
        ]
        model_groups = [
            ModelGroupFactory(model_type=model_type)
            for model_type in model_types
        ]
        train_end_times = [
            datetime(2013, 1, 1),
            datetime(2014, 1, 1),
            datetime(2015, 1, 1),
            datetime(2016, 1, 1),
        ]

        models = [
            ModelFactory(model_group_rel=model_group,
                         train_end_time=train_end_time)
            for model_group in model_groups
            for train_end_time in train_end_times
        ]
        metrics = [
            ("precision@", "100_abs"),
            ("recall@", "100_abs"),
            ("precision@", "50_abs"),
            ("recall@", "50_abs"),
            ("fpr@", "10_pct"),
        ]

        class ImmediateEvalFactory(EvaluationFactory):
            evaluation_start_time = factory.LazyAttribute(
                lambda o: o.model_rel.train_end_time)

        for model in models:
            for (metric, parameter) in metrics:
                ImmediateEvalFactory(model_rel=model,
                                     metric=metric,
                                     parameter=parameter)

        session.commit()

        # define a very loose filtering that should admit all model groups
        no_filtering = [
            {
                "metric": "precision@",
                "parameter": "100_abs",
                "max_from_best": 1.0,
                "threshold_value": 0.0,
            },
            {
                "metric": "recall@",
                "parameter": "100_abs",
                "max_from_best": 1.0,
                "threshold_value": 0.0,
            },
        ]
        model_group_ids = [mg.model_group_id for mg in model_groups]
        auditioner = Auditioner(db_engine, model_group_ids, train_end_times,
                                no_filtering)
        assert len(auditioner.thresholded_model_group_ids) == num_model_groups
        auditioner.plot_model_groups()

        # here, we pick thresholding rules that should definitely remove
        # all model groups from contention because they are too strict.
        remove_all = [
            {
                "metric": "precision@",
                "parameter": "100_abs",
                "max_from_best": 0.0,
                "threshold_value": 1.1,
            },
            {
                "metric": "recall@",
                "parameter": "100_abs",
                "max_from_best": 0.0,
                "threshold_value": 1.1,
            },
        ]

        auditioner.update_metric_filters(new_filters=remove_all)
        assert len(auditioner.thresholded_model_group_ids) == 0

        # pass the argument instead and remove all model groups
        auditioner.set_one_metric_filter(
            metric="precision@",
            parameter="100_abs",
            max_from_best=0.0,
            threshold_value=1.1,
        )
        assert len(auditioner.thresholded_model_group_ids) == 0

        # one potential place for bugs would be when we pull back the rules
        # for being too restrictive. we want to make sure that the original list is
        # always used for thresholding, or else such a move would be impossible
        auditioner.update_metric_filters(new_filters=no_filtering)
        assert len(auditioner.thresholded_model_group_ids) == num_model_groups

        # pass the argument instead and let all model groups pass
        auditioner.set_one_metric_filter(
            metric="precision@",
            parameter="100_abs",
            max_from_best=1.0,
            threshold_value=0.0,
        )
        assert len(auditioner.thresholded_model_group_ids) == num_model_groups

        # now, we want to take this partially thresholded list and run it through
        # a grid of selection rules, meant to pick winners by a variety of user-defined
        # criteria
        rule_grid = [
            {
                "shared_parameters": [
                    {
                        "metric": "precision@",
                        "parameter": "100_abs"
                    },
                    {
                        "metric": "recall@",
                        "parameter": "100_abs"
                    },
                ],
                "selection_rules": [
                    {
                        "name": "most_frequent_best_dist",
                        "dist_from_best_case": [0.1, 0.2, 0.3],
                        "n": 1,
                    },
                    {
                        "name": "best_current_value",
                        "n": 1
                    },
                ],
            },
            {
                "shared_parameters": [{
                    "metric1": "precision@",
                    "parameter1": "100_abs"
                }],
                "selection_rules": [{
                    "name": "best_average_two_metrics",
                    "metric2": ["recall@"],
                    "parameter2": ["100_abs"],
                    "metric1_weight": [0.4, 0.5, 0.6],
                    "n": 1,
                }],
            },
        ]
        auditioner.register_selection_rule_grid(rule_grid, plot=False)
        final_model_group_ids = auditioner.selection_rule_model_group_ids

        # we expect the result to be a mapping of selection rule name to model group id
        assert isinstance(final_model_group_ids, dict)

        # we expect that there is one winner for each selection rule
        assert sorted(final_model_group_ids.keys()) == sorted(
            [rule.descriptive_name for rule in auditioner.selection_rules])
Example #29
0
 def setup_data(self, engine):
     ensure_db(engine)
     init_engine(engine)
     ModelGroupFactory(model_group_id=1, model_type="modelType1")
     ModelGroupFactory(model_group_id=2, model_type="modelType2")
     ModelGroupFactory(model_group_id=3, model_type="modelType3")
     ModelGroupFactory(model_group_id=4, model_type="modelType4")
     ModelGroupFactory(model_group_id=5, model_type="modelType5")
     session.commit()
     distance_table = DistanceFromBestTable(db_engine=engine,
                                            models_table="models",
                                            distance_table="dist_table",
                                            agg_type="worst")
     distance_table._create()
     distance_rows = [
         # 2014: model group 1 should pass both close and min checks
         (1, "2014-01-01", "precision@", "100_abs", 0.5, 0.5, 0.0, 0.38),
         (1, "2014-01-01", "recall@", "100_abs", 0.5, 0.5, 0.0, 0.38),
         (1, "2014-01-01", "false positives@", "100_abs", 40, 30, 10, 10),
         # 2015: model group 1 should not pass close check
         (1, "2015-01-01", "precision@", "100_abs", 0.5, 0.88, 0.38, 0.0),
         (1, "2015-01-01", "recall@", "100_abs", 0.5, 0.88, 0.38, 0.0),
         (1, "2015-01-01", "false positives@", "100_abs", 40, 30, 10, 10),
         (1, "2016-01-01", "precision@", "100_abs", 0.46, 0.46, 0.0, 0.11),
         (1, "2016-01-01", "recall@", "100_abs", 0.46, 0.46, 0.0, 0.11),
         (1, "2016-01-01", "false positives@", "100_abs", 40, 30, 10, 10),
         # 2014: model group 2 should not pass min check
         (2, "2014-01-01", "precision@", "100_abs", 0.39, 0.5, 0.11, 0.5),
         (2, "2014-01-01", "recall@", "100_abs", 0.5, 0.5, 0.0, 0.38),
         (2, "2014-01-01", "false positives@", "100_abs", 40, 30, 10, 10),
         # 2015: model group 2 should pass both checks
         (2, "2015-01-01", "precision@", "100_abs", 0.69, 0.88, 0.19, 0.12),
         (2, "2015-01-01", "recall@", "100_abs", 0.69, 0.88, 0.19, 0.0),
         (2, "2015-01-01", "false positives@", "100_abs", 40, 30, 10, 10),
         (2, "2016-01-01", "precision@", "100_abs", 0.34, 0.46, 0.12, 0.11),
         (2, "2016-01-01", "recall@", "100_abs", 0.46, 0.46, 0.0, 0.11),
         (2, "2016-01-01", "false positives@", "100_abs", 40, 30, 10, 10),
         # model group 3 not included in this round
         (3, "2014-01-01", "precision@", "100_abs", 0.28, 0.5, 0.22, 0.0),
         (3, "2014-01-01", "recall@", "100_abs", 0.5, 0.5, 0.0, 0.38),
         (3, "2014-01-01", "false positives@", "100_abs", 40, 30, 10, 10),
         (3, "2015-01-01", "precision@", "100_abs", 0.88, 0.88, 0.0, 0.02),
         (3, "2015-01-01", "recall@", "100_abs", 0.5, 0.88, 0.38, 0.0),
         (3, "2015-01-01", "false positives@", "100_abs", 40, 30, 10, 10),
         (3, "2016-01-01", "precision@", "100_abs", 0.44, 0.46, 0.02, 0.11),
         (3, "2016-01-01", "recall@", "100_abs", 0.46, 0.46, 0.0, 0.11),
         (3, "2016-01-01", "false positives@", "100_abs", 40, 30, 10, 10),
         # 2014: model group 4 should not pass any checks
         (4, "2014-01-01", "precision@", "100_abs", 0.29, 0.5, 0.21, 0.21),
         (4, "2014-01-01", "recall@", "100_abs", 0.5, 0.5, 0.0, 0.38),
         (4, "2014-01-01", "false positives@", "100_abs", 40, 30, 10, 10),
         # 2015: model group 4 should not pass close check
         (4, "2015-01-01", "precision@", "100_abs", 0.67, 0.88, 0.21, 0.21),
         (4, "2015-01-01", "recall@", "100_abs", 0.5, 0.88, 0.38, 0.0),
         (4, "2015-01-01", "false positives@", "100_abs", 40, 30, 10, 10),
         (4, "2016-01-01", "precision@", "100_abs", 0.25, 0.46, 0.21, 0.21),
         (4, "2016-01-01", "recall@", "100_abs", 0.46, 0.46, 0.0, 0.11),
         (4, "2016-01-01", "false positives@", "100_abs", 40, 30, 10, 10),
         # 2014: model group 5 should not pass because precision is good but not recall
         (5, "2014-01-01", "precision@", "100_abs", 0.5, 0.38, 0.0, 0.38),
         (5, "2014-01-01", "recall@", "100_abs", 0.3, 0.5, 0.2, 0.38),
         (5, "2014-01-01", "false positives@", "100_abs", 40, 30, 10, 10),
         # 2015: model group 5 should not pass because precision is good but not recall
         (5, "2015-01-01", "precision@", "100_abs", 0.5, 0.88, 0.38, 0.0),
         (5, "2015-01-01", "recall@", "100_abs", 0.3, 0.88, 0.58, 0.0),
         (5, "2015-01-01", "false positives@", "100_abs", 40, 30, 10, 10),
         (5, "2016-01-01", "precision@", "100_abs", 0.46, 0.46, 0.0, 0.11),
         (5, "2016-01-01", "recall@", "100_abs", 0.3, 0.46, 0.16, 0.11),
         (5, "2016-01-01", "false positives@", "100_abs", 40, 30, 10, 10),
         # 2014: model group 6 is failed by false positives
         (6, "2014-01-01", "precision@", "100_abs", 0.5, 0.5, 0.0, 0.38),
         (6, "2014-01-01", "recall@", "100_abs", 0.5, 0.5, 0.0, 0.38),
         (6, "2014-01-01", "false positives@", "100_abs", 60, 30, 30, 10),
         # 2015: model group 6 is failed by false positives
         (6, "2015-01-01", "precision@", "100_abs", 0.5, 0.88, 0.38, 0.0),
         (6, "2015-01-01", "recall@", "100_abs", 0.5, 0.38, 0.0, 0.38),
         (6, "2015-01-01", "false positives@", "100_abs", 60, 30, 30, 10),
         (6, "2016-01-01", "precision@", "100_abs", 0.46, 0.46, 0.0, 0.11),
         (6, "2016-01-01", "recall@", "100_abs", 0.5, 0.5, 0.0, 0.38),
         (6, "2016-01-01", "false positives@", "100_abs", 40, 30, 10, 10),
     ]
     for dist_row in distance_rows:
         engine.execute(
             "insert into dist_table values (%s, %s, %s, %s, %s, %s, %s, %s)",
             dist_row,
         )
     thresholder = ModelGroupThresholder(
         distance_from_best_table=distance_table,
         train_end_times=["2014-01-01", "2015-01-01"],
         initial_model_group_ids=[1, 2, 4, 5, 6],
         initial_metric_filters=self.metric_filters,
     )
     return thresholder
Example #30
0
def test_PreAudition():
    with testing.postgresql.Postgresql() as postgresql:
        db_engine = create_engine(postgresql.url())
        ensure_db(db_engine)
        init_engine(db_engine)
        # set up data, randomly generated by the factories but conforming
        # generally to what we expect triage_metadata schema data to look like
        num_model_groups = 10
        model_types = [
            "classifier type {}".format(i) for i in range(0, num_model_groups)
        ]
        model_configs = [
            {"label_definition": "label_1"}
            if i % 2 == 0
            else {"label_definition": "label_2"}
            for i in range(0, num_model_groups)
        ]
        model_groups = [
            ModelGroupFactory(model_type=model_type, model_config=model_config)
            for model_type, model_config in zip(model_types, model_configs)
        ]
        train_end_times = [
            datetime(2013, 1, 1),
            datetime(2013, 7, 1),
            datetime(2014, 1, 1),
            datetime(2014, 7, 1),
            datetime(2015, 1, 1),
            datetime(2015, 7, 1),
            datetime(2016, 7, 1),
            datetime(2016, 1, 1),
        ]

        models = [
            ModelFactory(model_group_rel=model_group, train_end_time=train_end_time)
            for model_group in model_groups
            for train_end_time in train_end_times
        ]
        metrics = [
            ("precision@", "100_abs"),
            ("recall@", "100_abs"),
            ("precision@", "50_abs"),
            ("recall@", "50_abs"),
            ("fpr@", "10_pct"),
        ]

        class ImmediateEvalFactory(EvaluationFactory):
            evaluation_start_time = factory.LazyAttribute(
                lambda o: o.model_rel.train_end_time
            )

        for model in models:
            for (metric, parameter) in metrics:
                ImmediateEvalFactory(
                    model_rel=model, metric=metric, parameter=parameter
                )

        session.commit()

        pre_aud = PreAudition(db_engine)

        # Expect the number of model groups with label_1
        assert len(pre_aud.get_model_groups_from_label("label_1")['model_groups']) == sum(
            [x["label_definition"] == "label_1" for x in model_configs]
        )

        # Expect no baseline model groups
        assert len(pre_aud.get_model_groups_from_label("label_1")['baseline_model_groups']) == 0

        # Expect the number of model groups with certain experiment_hash
        experiment_hash = list(
            pd.read_sql(
                """SELECT experiment_hash
                FROM triage_metadata.models
                JOIN triage_metadata.experiment_models using (model_hash)
                limit 1""",
                con=db_engine,
            )["experiment_hash"]
        )[0]
        assert len(pre_aud.get_model_groups_from_experiment(experiment_hash)['model_groups']) == 1

        # Expect the number of model groups for customs SQL
        query = """
            SELECT DISTINCT(model_group_id)
            FROM triage_metadata.models
            JOIN triage_metadata.experiment_models using (model_hash)
            WHERE train_end_time >= '2013-01-01'
            AND experiment_hash = '{}'
        """.format(
            experiment_hash
        )
        assert len(pre_aud.get_model_groups(query)) == 1
        # Expect the number of train_end_times after 2014-01-01
        assert len(pre_aud.get_train_end_times(after="2014-01-01")) == 6

        query = """
            SELECT DISTINCT train_end_time
            FROM triage_metadata.models
            WHERE model_group_id IN ({})
                AND train_end_time >= '2014-01-01'
            ORDER BY train_end_time
            """.format(
            ", ".join(map(str, pre_aud.model_groups))
        )

        assert len(pre_aud.get_train_end_times(query=query)) == 6