Example #1
0
def test_load_state_interoperability(_algos, _models, is_resume):
    config_save = get_empty_config()
    config_save['compression'] = [{
        'algorithm': algo,
        'params': {}
    } for algo in _algos['save_algos']]
    algo_save = create_test_compression_algo(config_save,
                                             _models['save_model'])
    model_save = algo_save.model
    saved_model_state = model_save.state_dict()
    ref_num_loaded = len(saved_model_state)

    config_resume = get_empty_config()
    config_resume['compression'] = [{
        'algorithm': algo,
        'params': {}
    } for algo in _algos['load_algos']]
    algo_resume = create_test_compression_algo(config_resume,
                                               _models['resume_model'])
    model_resume = algo_resume.model

    if not is_resume or (is_resume and _algos['is_resume_ok']):
        act_num_loaded = load_state(model_resume, saved_model_state, is_resume)

        if ('magnitude_sparsity' in _algos['load_algos'] or 'const_sparsity' in _algos['load_algos']) \
            and 'rb_sparsity' in _algos['save_algos']:
            # no need to load _mask and _uniform
            ref_num_loaded -= 2
        assert act_num_loaded == ref_num_loaded
    else:
        with pytest.raises(RuntimeError):
            load_state(model_resume, saved_model_state, is_resume)
def test_can_restore_binary_mask_on_magnitude_algo_resume():
    config = get_empty_config()
    config['compression'] = {
        "algorithm": "magnitude_sparsity",
        "weight_importance": "abs",
        "params": {
            "schedule": "multistep",
            "sparsity_levels": [0.3, 0.5]
        }
    }
    magnitude_algo = create_compression_algorithm(MagnitudeTestModel(), config)
    sparse_model = magnitude_algo.model
    with torch.no_grad():
        sparse_model(torch.ones([1, 1, 10, 10]))

    config = get_empty_config()
    config["compression"] = {"algorithm": "const_sparsity"}
    const_algo = create_compression_algorithm(MagnitudeTestModel(), config)
    const_sparse_model = const_algo.model

    load_state(const_sparse_model, sparse_model.state_dict())

    op = const_sparse_model.conv1.pre_ops['0']
    check_equal(ref_mask_1, op.operand.binary_mask)

    op = const_sparse_model.conv2.pre_ops['0']
    check_equal(ref_mask_2, op.operand.binary_mask)
def test_load_state_interoperability(_algos, _model_wrapper, is_resume):
    config_save = get_empty_config()
    config_save['compression'] = [{'algorithm': algo} for algo in _algos['save_algos']]
    compressed_model_save, _ = create_compressed_model_and_algo_for_test(BasicConvTestModel(), config_save)
    model_save = _model_wrapper['save_model'](compressed_model_save)
    saved_model_state = model_save.state_dict()
    ref_num_loaded = len(saved_model_state)

    config_resume = get_empty_config()
    config_resume['compression'] = [{'algorithm': algo} for algo in _algos['load_algos']]
    compressed_model_resume, _ = create_compressed_model_and_algo_for_test(BasicConvTestModel(),
                                                                           config_resume)
    model_resume = _model_wrapper['resume_model'](compressed_model_resume)

    if not is_resume or (is_resume and _algos['is_resume_ok']):
        act_num_loaded = load_state(model_resume, saved_model_state, is_resume)

        if ('magnitude_sparsity' in _algos['load_algos'] or 'const_sparsity' in _algos['load_algos']) \
            and 'rb_sparsity' in _algos['save_algos']:
            # no need to load _mask and _uniform
            ref_num_loaded -= 2
        assert act_num_loaded == ref_num_loaded
    else:
        with pytest.raises(RuntimeError):
            load_state(model_resume, saved_model_state, is_resume)
Example #4
0
def test_can_restore_binary_mask_on_magnitude_quant_algo_resume():
    config = get_empty_config()
    config["compression"] = [
        {"algorithm": "magnitude_sparsity", "weight_importance": "abs",
         "params": {"schedule": "multistep", "sparsity_levels": [0.3, 0.5]}},
        {"algorithm": "quantization"}]
    reset_context('orig')
    reset_context('quantized_graphs')
    magnitude_quant_algo = create_compression_algorithm(MagnitudeTestModel(), config)
    # load_state doesn't support CPU + Quantization
    sparse_model = torch.nn.DataParallel(magnitude_quant_algo.model)
    sparse_model.cuda()
    with torch.no_grad():
        sparse_model(torch.ones([1, 1, 10, 10]))

    reset_context('orig')
    reset_context('quantized_graphs')
    config = get_empty_config()
    config["compression"] = [{"algorithm": "const_sparsity"}, {"algorithm": "quantization"}]
    const_algo = create_compression_algorithm(MagnitudeTestModel(), config)
    const_sparse_model = const_algo.model

    load_state(const_sparse_model, sparse_model.state_dict())

    op = const_sparse_model.module.conv1.pre_ops['0']
    check_equal(ref_mask_1, op.operand.binary_mask)

    op = const_sparse_model.module.conv2.pre_ops['0']
    check_equal(ref_mask_2, op.operand.binary_mask)
def test_export_stacked_bi_lstm(tmp_path):
    p = LSTMTestSizes(3, 3, 3, 3)
    config = get_empty_config(input_sample_size=(1, p.hidden_size,
                                                 p.input_size))
    config['compression'] = {'algorithm': 'quantization'}

    # TODO: batch_first=True fails with building graph: ambiguous call to mul or sigmoid
    test_rnn = NNCF_RNN('LSTM',
                        input_size=p.input_size,
                        hidden_size=p.hidden_size,
                        num_layers=2,
                        bidirectional=True,
                        batch_first=False)
    model, algo = create_compressed_model_and_algo_for_test(test_rnn, config)

    test_path = str(tmp_path.joinpath('test.onnx'))
    algo.export_model(test_path)
    assert os.path.exists(test_path)

    onnx_num = 0
    model = onnx.load(test_path)
    # pylint: disable=no-member
    for node in model.graph.node:
        if node.op_type == 'FakeQuantize':
            onnx_num += 1
    assert onnx_num == 50
def test_can_choose_scheduler(algo, schedule_type, scheduler_class):
    config = get_empty_config()
    config['compression']['algorithm'] = algo
    config['compression']["params"]["schedule"] = schedule_type
    _, compression_ctrl = create_compressed_model_and_algo_for_test(
        MockModel(), config)
    assert isinstance(compression_ctrl.scheduler, scheduler_class)
def test_can_create_rb_algo__with_adaptive_scheduler():
    config = get_empty_config()
    config['compression']['algorithm'] = 'rb_sparsity'
    config['compression']["params"]["schedule"] = 'adaptive'
    _, compression_ctrl = create_compressed_model_and_algo_for_test(
        MockModel(), config)
    assert isinstance(compression_ctrl.scheduler, AdaptiveSparsityScheduler)
def test_can_create_const_sparse_algo__with_default():
    model = BasicConvTestModel()
    config = get_empty_config()
    config["compression"] = {"algorithm": "const_sparsity"}
    compression_algo = create_compression_algorithm(deepcopy(model), config)

    assert isinstance(compression_algo, ConstSparsity)
    sparse_model = compression_algo.model
    assert len(list(sparse_model.modules())) == 6

    model_conv = get_all_modules_by_type(model, 'Conv2d')
    sparse_model_conv = get_all_modules_by_type(sparse_model, 'NNCFConv2d')
    assert len(model_conv) == len(sparse_model_conv)

    for module_name in model_conv:
        scope = module_name.split('/')
        scope[-1] = scope[-1].replace('Conv2d', 'NNCFConv2d')
        sparse_module_name = '/'.join(scope)
        assert sparse_module_name in sparse_model_conv

        store = []
        sparse_module = sparse_model_conv[sparse_module_name]
        for op in sparse_module.pre_ops.values():
            if isinstance(op, UpdateWeight) and isinstance(
                    op.operand, BinaryMask):
                ref_mask = torch.ones_like(sparse_module.weight)
                assert torch.allclose(op.operand.binary_mask, ref_mask)
                assert op.__class__.__name__ not in store
                store.append(op.__class__.__name__)
def test_can_create_rb_algo__with_adaptive_scheduler():
    config = get_empty_config()
    config['compression']['algorithm'] = 'rb_sparsity'
    config['compression']["params"]["schedule"] = 'adaptive'
    compression_algo = create_compression_algorithm(BasicConvTestModel(),
                                                    config)
    assert isinstance(compression_algo.scheduler, AdaptiveSparsityScheduler)
def test_can_choose_scheduler(algo, schedule_type, scheduler_class):
    config = get_empty_config()
    config['compression']['algorithm'] = algo
    config['compression']["params"]["schedule"] = schedule_type
    compression_algo = create_compression_algorithm(BasicConvTestModel(),
                                                    config)
    assert isinstance(compression_algo.scheduler, scheduler_class)
Example #11
0
def test_magnitude_algo_binary_masks_are_applied():
    model = BasicConvTestModel()
    config = get_empty_config()
    config['compression'] = {'algorithm': "magnitude_sparsity"}
    compressed_model, compression_ctrl = create_compressed_model_and_algo_for_test(
        model, config)
    minfo_list = compression_ctrl.sparsified_module_info  # type: List[SparseModuleInfo]
    minfo = minfo_list[0]  # type: SparseModuleInfo

    minfo.operand.binary_mask = torch.ones_like(minfo.module.weight)  # 1x1x2x2
    input_ = torch.ones(size=(1, 1, 5, 5))
    ref_output_1 = -4 * torch.ones(size=(2, 4, 4))
    output_1 = compressed_model(input_)
    assert torch.all(torch.eq(output_1, ref_output_1))

    minfo.operand.binary_mask[0][0][0][1] = 0
    minfo.operand.binary_mask[1][0][1][0] = 0
    ref_output_2 = -3 * torch.ones_like(ref_output_1)
    output_2 = compressed_model(input_)
    assert torch.all(torch.eq(output_2, ref_output_2))

    minfo.operand.binary_mask[1][0][0][1] = 0
    ref_output_3 = ref_output_2.clone()
    ref_output_3[1] = -2 * torch.ones_like(ref_output_1[1])
    output_3 = compressed_model(input_)
    assert torch.all(torch.eq(output_3, ref_output_3))
def get_basic_quantization_config_with_hw_config_type(hw_config_type,
                                                      input_sample_size):
    config = get_empty_config(input_sample_sizes=input_sample_size)
    config["hw_config_type"] = hw_config_type
    config["compression"] = {
        "algorithm": "quantization",
    }
    return config
Example #13
0
 def create_config():
     config = get_empty_config()
     config['compression'] = {
         'algorithm': 'quantization',
         'initializer': {
             'num_init_steps': 1
         }
     }
     return config
def get_basic_quantization_config(quantization_type, input_sample_size):
    config = get_empty_config(input_sample_size=input_sample_size)
    config["compression"] = {"algorithm": "quantization",
                             "activations": {
                                 "mode": quantization_type
                             },
                             "weights": {
                                 "mode": quantization_type
                             }}
    return config
Example #15
0
 def test_can_create_sparse_scheduler__with_defaults(self, algo):
     config = get_empty_config()
     config['compression']['algorithm'] = algo
     config['compression']["params"]["schedule"] = 'polynomial'
     compression_algo = create_compression_algorithm(BasicConvTestModel(), config)
     scheduler = compression_algo.scheduler
     assert scheduler.initial_sparsity == 0
     assert scheduler.max_sparsity == 0.5
     assert scheduler.max_step == 90
     assert scheduler.sparsity_training_steps == 100
Example #16
0
def test_can_not_create_magnitude_algo__with_adaptive_scheduler():
    config = get_empty_config()
    config['compression'] = {
        'algorithm': 'magnitude_sparsity',
        "params": {
            "schedule": 'adaptive'
        }
    }
    with pytest.raises(TypeError):
        _, _ = create_compressed_model_and_algo_for_test(MockModel(), config)
    def test_number_of_calling_fq_for_lstm(self):
        p = LSTMTestSizes(1, 1, 1, 5)
        num_layers = 2
        bidirectional = True
        num_directions = 2 if bidirectional else 1
        bias = True
        batch_first = False
        config = get_empty_config(input_sample_size=(p.seq_length, p.batch,
                                                     p.input_size))
        config['compression'] = {
            'algorithm': 'quantization',
            'quantize_inputs': True
        }

        test_data = TestLSTMCell.generate_lstm_data(p,
                                                    num_layers,
                                                    num_directions,
                                                    bias=bias,
                                                    batch_first=batch_first)

        test_rnn = NNCF_RNN('LSTM',
                            input_size=p.input_size,
                            hidden_size=p.hidden_size,
                            num_layers=num_layers,
                            bidirectional=bidirectional,
                            bias=bias,
                            batch_first=batch_first)
        TestLSTM.set_ref_lstm_weights(test_data, test_rnn, num_layers,
                                      num_directions, bias)
        test_hidden = TestLSTM.get_test_lstm_hidden(test_data)

        model, algo = create_compressed_model_and_algo_for_test(
            test_rnn, config)

        class Counter:
            def __init__(self):
                self.count = 0

            def next(self):
                self.count += 1

        def hook(model, input_, counter):
            counter.next()

        counters = {}
        for name, quantizer in algo.all_quantizations.items():
            counter = Counter()
            counters[name] = counter
            quantizer.register_forward_pre_hook(partial(hook, counter=counter))
        _ = model(test_data.x, test_hidden)
        assert model.get_graph().get_nodes_count(
        ) == 107  # NB: may always fail in debug due to superfluous 'cat' nodes
        assert len(counters) == 50
        for counter in counters.values():
            assert counter.count == p.seq_length
 def test_can_create_sparse_scheduler__with_defaults(self, algo):
     config = get_empty_config()
     config['compression']['algorithm'] = algo
     config['compression']["params"]["schedule"] = 'polynomial'
     _, compression_ctrl = create_compressed_model_and_algo_for_test(
         MockModel(), config)
     scheduler = compression_ctrl.scheduler
     assert scheduler.initial_sparsity == 0
     assert scheduler.max_sparsity == 0.5
     assert scheduler.max_step == 90
     assert scheduler.sparsity_training_steps == 100
    def test_sparse_network(self, model_name, model_builder, input_size, algo, params):
        model = model_builder()
        from nncf.layers import NNCF_MODULES_MAP
        sparsifiable_modules = list(NNCF_MODULES_MAP.values())
        ref_num_sparsed = len(get_all_modules_by_type(model, sparsifiable_modules))

        config = get_empty_config(input_sample_size=input_size)
        config["compression"] = {"algorithm": algo, "params": params}

        compressed_model, compression_ctrl = create_compressed_model_and_algo_for_test(model, config)
        assert ref_num_sparsed == len(compression_ctrl.sparsified_module_info)
        check_model_graph(compressed_model, model_name, algo)
Example #20
0
def test_scale_and_sign_init_for_quant_algo():
    model = TwoConvTestModel()

    config = get_empty_config()
    config['compression'] = {
        'algorithm': 'quantization',
        'initializer': {
            'num_init_steps': 1
        }
    }

    reset_context('orig')
    reset_context('quantized_graphs')
    compression_algo = create_compression_algorithm(model, config)
    model = compression_algo.model

    input_sample_size = config.input_sample_size

    class OnesDatasetMock:
        def __init__(self, input_size):
            self.input_size = input_size
            super().__init__()

        def __getitem__(self, index):
            return torch.ones(self.input_size), torch.ones(1)

        def __len__(self):
            return 1

    data_loader = torch.utils.data.DataLoader(OnesDatasetMock(
        input_sample_size[1:]),
                                              batch_size=1,
                                              num_workers=1,
                                              shuffle=False)
    compression_algo.initialize(data_loader)

    model_conv = get_all_modules_by_type(model, 'Quantize')
    ref_table = {
        '.*Sequential\\[0\\].*UpdateWeight.*': (True, 1),
        '.*Sequential\\[1\\].*UpdateWeight. *': (False, 1),
        '.*activation_quantizers.*Sequential\\[0\\].*': (True, 4),
        '.*activation_quantizers.*Sequential\\[1\\].*': (True, 24)
    }
    for name, module in model_conv.items():
        for pattern, ref_values in ref_table.items():
            match = re.search(pattern, name)
            if match:
                assert isinstance(module, Quantize)
                assert module.signed == ref_values[
                    0], 'sign is not matched for {}'.format(name)
                assert module.scale == ref_values[
                    1], 'scale is not matched for {}'.format(name)
Example #21
0
def test_can_restore_binary_mask_on_magnitude_quant_algo_resume(tmp_path):
    config = get_empty_config()
    config["compression"] = [{
        "algorithm": "magnitude_sparsity",
        "params": {
            "schedule": "multistep",
            "multistep_sparsity_levels": [0.3, 0.5],
            "weight_importance": "abs"
        }
    }, {
        "algorithm": "quantization"
    }]

    sparse_model, _ = create_compressed_model_and_algo_for_test(
        MagnitudeTestModel(), config)

    # load_state doesn't support CPU + Quantization
    sparse_model = torch.nn.DataParallel(sparse_model)
    sparse_model.cuda()
    with torch.no_grad():
        sparse_model(torch.ones([1, 1, 10, 10]))

    config = get_empty_config()
    config["compression"] = [{
        "algorithm": "const_sparsity"
    }, {
        "algorithm": "quantization"
    }]
    const_sparse_model, _ = create_compressed_model_and_algo_for_test(
        MagnitudeTestModel(), config)

    load_state(const_sparse_model, sparse_model.state_dict())

    op = const_sparse_model.get_nncf_wrapped_model().conv1.pre_ops['0']
    check_equal(ref_mask_1, op.operand.binary_mask)

    op = const_sparse_model.get_nncf_wrapped_model().conv2.pre_ops['0']
    check_equal(ref_mask_2, op.operand.binary_mask)
    def test_sparse_network(self, desc: ModelDesc, algo):
        model = desc.model_builder()
        from nncf.layers import NNCF_MODULES_MAP
        sparsifiable_modules = list(NNCF_MODULES_MAP.values())
        ref_num_sparsed = len(
            get_all_modules_by_type(model, sparsifiable_modules))

        config = get_empty_config(input_sample_sizes=desc.input_sample_sizes)
        config["compression"] = {"algorithm": algo}

        compressed_model, compression_ctrl = \
            create_compressed_model_and_algo_for_test(model, config, dummy_forward_fn=desc.dummy_forward_fn)
        assert ref_num_sparsed == len(compression_ctrl.sparsified_module_info)
        check_model_graph(compressed_model, desc.dot_filename, algo)
def test_ordinary_load(algo, _model_wrapper, is_resume):
    config = get_empty_config()
    if algo:
        config['compression'] = {'algorithm': algo, 'params': {}}

    algo_save = create_test_compression_algo(config, BasicConvTestModel())
    model_save = _model_wrapper['save_model'](algo_save.model)

    algo_resume = create_test_compression_algo(config, BasicConvTestModel())
    model_resume = _model_wrapper['resume_model'](algo_resume.model)

    num_loaded = load_state(model_resume, model_save.state_dict(), is_resume)

    assert num_loaded == len(model_save.state_dict())
Example #24
0
def test_ordinary_load(algo, _model_wrapper, is_resume):
    config = get_empty_config()
    if algo:
        config['compression'] = {'algorithm': algo}

    compressed_model_save, _ = create_compressed_model_and_algo_for_test(BasicConvTestModel(), config)
    model_save = _model_wrapper['save_model'](compressed_model_save)

    compressed_model_resume, _ = create_compressed_model_and_algo_for_test(BasicConvTestModel(), config)
    model_resume = _model_wrapper['resume_model'](compressed_model_resume)

    num_loaded = load_state(model_resume, model_save.state_dict(), is_resume)

    assert num_loaded == len(model_save.state_dict())
Example #25
0
def test_ordinary_load(algo, _models, is_resume):
    config = get_empty_config()
    if algo:
        config['compression'] = {'algorithm': algo, 'params': {}}

    algo_save = create_test_compression_algo(config, _models['save_model'])
    model_save = algo_save.model

    algo_resume = create_test_compression_algo(config, _models['resume_model'])
    model_resume = algo_resume.model

    num_loaded = load_state(model_resume, model_save.state_dict(), is_resume)

    assert num_loaded == len(model_save.state_dict())
def get_basic_quantization_config(qconfig, input_sample_sizes=None):
    config = get_empty_config(input_sample_sizes=input_sample_sizes)
    config['compression'] = {
        'algorithm': 'quantization',
        'activations': {
            'mode': qconfig.mode,
            'per_channel': qconfig.per_channel
        },
        'weights': {
            'mode': qconfig.mode,
            'per_channel': qconfig.per_channel
        }
    }
    return config
Example #27
0
def test_magnitude_scheduler_can_do_epoch_step__with_multistep():
    _ = MagnitudeTestModel()
    config = get_empty_config()
    config["compression"] = {"algorithm": "magnitude_sparsity",
                             "params": {"schedule": "multistep", 'multistep_steps': [1]}}
    _, compression_ctrl = create_compressed_model_and_algo_for_test(MagnitudeTestModel(), config)
    scheduler = compression_ctrl.scheduler
    assert isinstance(scheduler, MultiStepSparsityScheduler)
    assert pytest.approx(compression_ctrl.sparsity_level) == 0.1
    assert scheduler.sparsity_levels == [0.1, 0.5]
    scheduler.epoch_step()
    assert compression_ctrl.sparsity_level == 0.5
    scheduler.epoch_step()
    assert compression_ctrl.sparsity_level == 0.5
Example #28
0
def test_activation_quantizers_order_is_the_same__for_resnet50(tmp_path):
    config = get_empty_config(input_sample_size=[1, 3, 224, 224])
    config['compression'] = {'algorithm': 'quantization'}
    ngpus_per_node = torch.cuda.device_count()

    torch.multiprocessing.spawn(activation_quantizers_dumping_worker,
                                nprocs=ngpus_per_node,
                                args=(config, tmp_path),
                                join=True)

    with open(get_path_to_keys(tmp_path, 0), 'r') as f:
        ref_list = f.readlines()
    for i in range(1, ngpus_per_node):
        with open(get_path_to_keys(tmp_path, i), 'r') as f:
            curr_list = f.readlines()
            assert curr_list == ref_list
Example #29
0
    def test_scheduler_can_do_epoch_step(self, algo, schedule, get_params, ref_levels):
        model = BasicConvTestModel()
        config = get_empty_config()
        config['compression']['algorithm'] = algo
        config['compression']["params"] = get_params()
        config['compression']["params"]["schedule"] = schedule
        compression_algo = create_compression_algorithm(model, config)
        scheduler = compression_algo.scheduler

        assert pytest.approx(scheduler.current_sparsity_level) == ref_levels[0]
        for ref_level in ref_levels[1:]:
            scheduler.epoch_step()
            assert pytest.approx(scheduler.current_sparsity_level) == ref_level

        for m in compression_algo.sparsified_module_info:
            assert not m.operand.sparsify
Example #30
0
    def test_scale_and_sign_init_for_quant_algo__without_init_section(self, wrap_dataloader):
        config = get_empty_config()
        config['compression'] = {'algorithm': 'quantization'}

        algo, compressed_model = self.create_algo_and_compressed_model(config)
        device = next(compressed_model.parameters()).device
        data_loader = self.create_dataloader(wrap_dataloader, config, device)

        algo.initialize(data_loader)

        self.check_sign_and_scale(compressed_model, {
            '.*Sequential\\[0\\].*UpdateWeight.*': (True, 1),
            '.*Sequential\\[1\\].*UpdateWeight. *': (False, 1),
            '.*activation_quantizers.*Sequential\\[0\\].*': (True, 4),
            '.*activation_quantizers.*Sequential\\[1\\].*': (True, 24)
        })