Example #1
0
 def test_scalar_mul(self):
     res = vector.scalar_mul(1.5, self.v)
     assert_allclose(self, res, vector.Vector([-0.75, 2.25, 3.75]))
Example #2
0
 def test_type_shape(self, data, expected_result):
     result = ConvertToMultiChannelBasedOnBratsClasses()(data)
     assert_allclose(result, expected_result)
     self.assertTrue(result.dtype in (bool, torch.bool))
Example #3
0
 def test_foreground_mask(self, in_type, arguments, image, mask):
     input_image = in_type(image)
     result = ForegroundMask(**arguments)(input_image)
     assert_allclose(result, mask, type_test="tensor")
 def test_correct_results(self, _, args, input_image, expected):
     converter = KeepLargestConnectedComponent(**args)
     result = converter(input_image)
     assert_allclose(result, expected, type_test=False)
Example #5
0
    def test_value(self, input_data, mode2, expected_box, expected_area):
        expected_box = convert_data_type(expected_box, dtype=np.float32)[0]
        boxes1 = convert_data_type(input_data["boxes"], dtype=np.float32)[0]
        mode1 = input_data["mode"]
        half_bool = input_data["half"]
        spatial_size = input_data["spatial_size"]

        # test float16
        if half_bool:
            boxes1 = convert_data_type(boxes1, dtype=np.float16)[0]
            expected_box = convert_data_type(expected_box, dtype=np.float16)[0]

        # test convert_box_mode, convert_box_to_standard_mode
        result2 = convert_box_mode(boxes=boxes1, src_mode=mode1, dst_mode=mode2)
        assert_allclose(result2, expected_box, type_test=True, device_test=True, atol=0.0)

        result1 = convert_box_mode(boxes=result2, src_mode=mode2, dst_mode=mode1)
        assert_allclose(result1, boxes1, type_test=True, device_test=True, atol=0.0)

        result_standard = convert_box_to_standard_mode(boxes=boxes1, mode=mode1)
        expected_box_standard = convert_box_to_standard_mode(boxes=expected_box, mode=mode2)
        assert_allclose(result_standard, expected_box_standard, type_test=True, device_test=True, atol=0.0)

        # test box_area, box_iou, box_giou, box_pair_giou
        assert_allclose(box_area(result_standard), expected_area, type_test=True, device_test=True, atol=0.0)
        iou_metrics = (box_iou, box_giou)
        for p in iou_metrics:
            self_iou = p(boxes1=result_standard[1:2, :], boxes2=result_standard[1:1, :])
            assert_allclose(self_iou, np.array([[]]), type_test=False)

            self_iou = p(boxes1=result_standard[1:2, :], boxes2=result_standard[1:2, :])
            assert_allclose(self_iou, np.array([[1.0]]), type_test=False)

        self_iou = box_pair_giou(boxes1=result_standard[1:1, :], boxes2=result_standard[1:1, :])
        assert_allclose(self_iou, np.array([]), type_test=False)

        self_iou = box_pair_giou(boxes1=result_standard[1:2, :], boxes2=result_standard[1:2, :])
        assert_allclose(self_iou, np.array([1.0]), type_test=False)

        # test box_centers, centers_in_boxes, boxes_center_distance
        result_standard_center = box_centers(result_standard)
        expected_center = convert_box_mode(boxes=boxes1, src_mode=mode1, dst_mode="cccwhd")[:, :3]
        assert_allclose(result_standard_center, expected_center, type_test=True, device_test=True, atol=0.0)

        center = expected_center
        center[2, :] += 10
        result_centers_in_boxes = centers_in_boxes(centers=center, boxes=result_standard)
        assert_allclose(result_centers_in_boxes, np.array([False, True, False]), type_test=False)

        center_dist, _, _ = boxes_center_distance(boxes1=result_standard[1:2, :], boxes2=result_standard[1:1, :])
        assert_allclose(center_dist, np.array([[]]), type_test=False)
        center_dist, _, _ = boxes_center_distance(boxes1=result_standard[1:2, :], boxes2=result_standard[1:2, :])
        assert_allclose(center_dist, np.array([[0.0]]), type_test=False)
        center_dist, _, _ = boxes_center_distance(boxes1=result_standard[0:1, :], boxes2=result_standard[0:1, :])
        assert_allclose(center_dist, np.array([[0.0]]), type_test=False)

        # test clip_boxes_to_image
        clipped_boxes, keep = clip_boxes_to_image(expected_box_standard, spatial_size, remove_empty=True)
        assert_allclose(
            expected_box_standard[keep, :], expected_box_standard[1:, :], type_test=True, device_test=True, atol=0.0
        )
        assert_allclose(
            id(clipped_boxes) != id(expected_box_standard), True, type_test=False, device_test=False, atol=0.0
        )

        # test non_max_suppression
        nms_box = non_max_suppression(
            boxes=result_standard, scores=boxes1[:, 1] / 2.0, nms_thresh=1.0, box_overlap_metric=box_giou
        )
        assert_allclose(nms_box, [1, 2, 0], type_test=False)

        nms_box = non_max_suppression(
            boxes=result_standard, scores=boxes1[:, 1] / 2.0, nms_thresh=-1.0, box_overlap_metric=box_iou
        )
        assert_allclose(nms_box, [1], type_test=False)
Example #6
0
 def test_split_patch_single_call(self, in_type, input_parameters, image,
                                  expected):
     input_image = in_type(image)
     splitter = SplitOnGrid(**input_parameters)
     output = splitter(input_image)
     assert_allclose(output, expected, type_test=False)
Example #7
0
 def test_alpha_1(self, im_shape, input_type):
     im = self.get_data(im_shape, input_type)
     alpha = [1.0, 1.0]
     t = RandGibbsNoise(1.0, alpha)
     out = t(deepcopy(im))
     assert_allclose(out, 0 * im, rtol=1e-7, atol=1e-2, type_test="tensor")
 def test_type_shape(self, input_data, data, expected_fg, expected_bg):
     result = FgBgToIndicesd(**input_data)(data)
     assert_allclose(result["label_fg_indices"], expected_fg)
     assert_allclose(result["label_bg_indices"], expected_bg)
Example #9
0
 def test_affine(self, input_param, input_data, expected_val):
     g = Affined(**input_param)
     result = g(input_data)["img"]
     assert_allclose(result, expected_val, rtol=1e-4, atol=1e-4)
Example #10
0
 def test_grid_distortiond(self, input_param, input_data, expected_val_img, expected_val_mask):
     g = GridDistortiond(**input_param)
     result = g(input_data)
     assert_allclose(result["img"], expected_val_img, type_test=False, rtol=1e-4, atol=1e-4)
     assert_allclose(result["mask"], expected_val_mask, type_test=False, rtol=1e-4, atol=1e-4)
Example #11
0
 def test_value(self, input_args, label, image, expected_indices):
     indices = ClassesToIndices(**input_args)(label, image)
     for i, e in zip(indices, expected_indices):
         assert_allclose(i, e)
Example #12
0
    def test_mat_vec_prod(self):
        res = matrix.mat_vec_prod(self.m, self.v)
        assert_allclose(self, res, vector.Vector([3.75, 10.5]))

        with self.assertRaises(ValueError):
            matrix.mat_vec_prod(self.m, vector.Vector([1.0]))
Example #13
0
 def test_softmax(self):
     res = vector.softmax(self.v)
     self.assertIsInstance(res, vector.Vector)
     self.assertAlmostEqual(sum(res.list), 1.0)
     assert_allclose(self, res,
                     vector.Vector([0.03511903, 0.25949646, 0.70538451]))
Example #14
0
 def test_ReLU(self):
     res = vector.ReLU(self.v)
     self.assertIsInstance(res, vector.Vector)
     assert_allclose(self, res, vector.Vector([0.0, 1.5, 2.5]))
Example #15
0
 def test_resample(self, input_param, input_data, expected_val):
     g = Resample(**input_param)
     result = g(**input_data)
     if "device" in input_data:
         self.assertEqual(result.device, input_data["device"])
     assert_allclose(result, expected_val, rtol=1e-4, atol=1e-4)
Example #16
0
 def test_correct_results(self, _, args, input_image, expected):
     converter = FillHoles(**args)
     for p in TEST_NDARRAYS:
         result = converter(p(clone(input_image)))
         assert_allclose(result, p(expected))
 def test_value(self, input_param, input_data, expected_value):
     set_determinism(seed=0)
     result = TorchVision(**input_param)(input_data)
     assert_allclose(result, expected_value, rtol=1e-3)
Example #18
0
 def test_single(self):
     c = Cumulative()
     c.extend([2, 3])
     c.append(1)
     assert_allclose(c.get_buffer(), torch.tensor([2, 3, 1]))
Example #19
0
 def test_0_prob(self, im_shape, input_type):
     im = self.get_data(im_shape, input_type)
     alpha = [0.5, 1.0]
     t = RandGibbsNoise(0.0, alpha)
     out = t(im)
     assert_allclose(out, im, rtol=1e-7, atol=0, type_test="tensor")
Example #20
0
 def test_output(self, class_args, probs_map, expected):
     nms = ProbNMS(**class_args)
     output = nms(probs_map)
     assert_allclose(output, expected)
Example #21
0
 def test_ras_to_lps(self, param, expected):
     assert_allclose(orientation_ras_lps(param), expected)
Example #22
0
 def test_value(self, argments, image, expected_data):
     result = HistogramNormalized(**argments)(image)["img"]
     assert_allclose(result, expected_data, type_test="tensor")
     self.assertEqual(get_equivalent_dtype(result.dtype, data_type=np.ndarray), argments.get("dtype", np.float32))
Example #23
0
 def test_value(self, arguments, image, expected_data, atol):
     for p in TEST_NDARRAYS:
         result = SavitzkyGolaySmooth(**arguments)(p(image.astype(np.float32)))
         assert_allclose(result, p(expected_data.astype(np.float32)), rtol=1e-4, atol=atol, type_test="tensor")
 def test_correct_results(self, input_data, expected):
     add_extreme_points_channel = AddExtremePointsChannel()
     result = add_extreme_points_channel(**input_data)
     assert_allclose(result[IMG_CHANNEL], expected, rtol=1e-4)
Example #25
0
 def test_correct_results(self, _, args, input_image, expected):
     converter = LabelFilter(**args)
     result = converter(input_image)
     assert_allclose(result, expected)
Example #26
0
 def test_value(self, input_param, img, expected_value):
     result = VoteEnsembled(**input_param)(img)
     assert_allclose(result["output"], expected_value)
Example #27
0
 def test_array_function(self, device="cpu", dtype=float):
     a = np.random.RandomState().randn(100, 100)
     b = MetaTensor(a, device=device)
     assert_allclose(np.sum(a), np.sum(b))
     assert_allclose(np.sum(a, axis=1), np.sum(b, axis=1))
     assert_allclose(np.linalg.qr(a), np.linalg.qr(b))
     c = MetaTensor([1.0, 2.0, 3.0], device=device, dtype=dtype)
     assert_allclose(np.argwhere(c == 1.0).astype(int).tolist(), [[0]])
     assert_allclose(np.concatenate([c, c]), np.asarray([1.0, 2.0, 3.0, 1.0, 2.0, 3.0]))
     if pytorch_after(1, 8, 1):
         assert_allclose(c > np.asarray([1.0, 1.0, 1.0]), np.asarray([False, True, True]))
         assert_allclose(
             c > torch.as_tensor([1.0, 1.0, 1.0], device=device), torch.as_tensor([False, True, True], device=device)
         )
Example #28
0
 def test_value(self, input_param, input_data, expected_value):
     result = CenterSpatialCropd(**input_param)(input_data)
     assert_allclose(result["img"], expected_value, type_test=False)
Example #29
0
 def test_identity(self):
     for p in TEST_NDARRAYS:
         img = p(self.imt)
         identity = Identity()
         assert_allclose(img, identity(img))
 def test_mode(self, array, expected, to_long):
     res = mode(array, to_long=to_long)
     assert_allclose(res, expected)