def setUp(self): unittest.TestCase.setUp(self) self.material = Argon() self.initialize_material() self.real_xtarget = 3.525 self.reciprocal_xtarget = 1.94 self.fourier_filter_cutoff = 1.5 filename = self.material.reciprocal_space_filename self.kwargs_for_files = { 'Files': [{ 'Filename': get_data_path(filename), 'ReciprocalFunction': 'S(Q)', 'Qmin': 0.02, 'Qmax': 15.0, 'Y': { 'Offset': 0.0, 'Scale': 1.0 }, 'X': { 'Offset': 0.0 } }, { 'Filename': get_data_path(self.material.reciprocal_space_filename), 'ReciprocalFunction': 'S(Q)', 'Qmin': 1.90, 'Qmax': 35.2, 'Y': { 'Offset': 0.0, 'Scale': 1.0 }, 'X': { 'Offset': 0.0 } }] } self.kwargs_for_stog_input = { 'NumberDensity': self.material.kwargs['rho'], '<b_coh>^2': self.material.kwargs['<b_coh>^2'], '<b_tot^2>': self.material.kwargs['<b_tot^2>'], 'FourierFilter': { 'Cutoff': self.fourier_filter_cutoff }, 'OmittedXrangeCorrection': False, 'Rdelta': self.r[1] - self.r[0], 'Rmin': min(self.r), 'Rmax': max(self.r) }
def test_no_val_end_module(tmpdir): """Tests use case where trainer saves the model, and user loads it from tags independently.""" tutils.reset_seed() class CurrentTestModel(LightningValidationStepMixin, LightningTestModelBase): pass hparams = tutils.get_hparams() model = CurrentTestModel(hparams) # logger file to get meta logger = tutils.get_test_tube_logger(tmpdir, False) trainer_options = dict(max_epochs=1, logger=logger, checkpoint_callback=ModelCheckpoint(tmpdir)) # fit model trainer = Trainer(**trainer_options) result = trainer.fit(model) # traning complete assert result == 1, 'amp + ddp model failed to complete' # save model new_weights_path = os.path.join(tmpdir, 'save_test.ckpt') trainer.save_checkpoint(new_weights_path) # load new model tags_path = tutils.get_data_path(logger, path_dir=tmpdir) tags_path = os.path.join(tags_path, 'meta_tags.csv') model_2 = LightningTestModel.load_from_metrics( weights_path=new_weights_path, tags_csv=tags_path) model_2.eval()
def test_model_saving_loading(tmpdir): """Tests use case where trainer saves the model, and user loads it from tags independently.""" tutils.reset_seed() hparams = tutils.get_hparams() model = LightningTestModel(hparams) # logger file to get meta logger = tutils.get_test_tube_logger(tmpdir, False) trainer_options = dict( max_epochs=1, logger=logger, checkpoint_callback=ModelCheckpoint(tmpdir) ) # fit model trainer = Trainer(**trainer_options) result = trainer.fit(model) # traning complete assert result == 1, 'amp + ddp model failed to complete' # make a prediction for dataloader in model.test_dataloader(): for batch in dataloader: break x, y = batch x = x.view(x.size(0), -1) # generate preds before saving model model.eval() pred_before_saving = model(x) # save model new_weights_path = os.path.join(tmpdir, 'save_test.ckpt') trainer.save_checkpoint(new_weights_path) # load new model tags_path = tutils.get_data_path(logger, path_dir=tmpdir) tags_path = os.path.join(tags_path, 'meta_tags.csv') model_2 = LightningTestModel.load_from_metrics(weights_path=new_weights_path, tags_csv=tags_path) model_2.eval() # make prediction # assert that both predictions are the same new_pred = model_2(x) assert torch.all(torch.eq(pred_before_saving, new_pred)).item() == 1
def test_running_test_pretrained_model_ddp(tmpdir): """Verify `test()` on pretrained model.""" if not tutils.can_run_gpu_test(): return tutils.reset_seed() tutils.set_random_master_port() hparams = tutils.get_hparams() model = LightningTestModel(hparams) # exp file to get meta logger = tutils.get_test_tube_logger(tmpdir, False) # exp file to get weights checkpoint = tutils.init_checkpoint_callback(logger) trainer_options = dict( show_progress_bar=False, max_epochs=1, train_percent_check=0.4, val_percent_check=0.2, checkpoint_callback=checkpoint, logger=logger, gpus=[0, 1], distributed_backend='ddp' ) # fit model trainer = Trainer(**trainer_options) result = trainer.fit(model) log.info(os.listdir(tutils.get_data_path(logger, path_dir=tmpdir))) # correct result and ok accuracy assert result == 1, 'training failed to complete' pretrained_model = tutils.load_model(logger, trainer.checkpoint_callback.filepath, module_class=LightningTestModel) # run test set new_trainer = Trainer(**trainer_options) new_trainer.test(pretrained_model) for dataloader in model.test_dataloader(): tutils.run_prediction(dataloader, pretrained_model)
def test_loading_meta_tags(tmpdir): tutils.reset_seed() from argparse import Namespace hparams = tutils.get_hparams() # save tags logger = tutils.get_test_tube_logger(tmpdir, False) logger.log_hyperparams(Namespace(some_str='a_str', an_int=1, a_float=2.0)) logger.log_hyperparams(hparams) logger.save() # load tags path_expt_dir = tutils.get_data_path(logger, path_dir=tmpdir) tags_path = os.path.join(path_expt_dir, 'meta_tags.csv') tags = load_hparams_from_tags_csv(tags_path) assert tags.batch_size == 32 and tags.hidden_dim == 1000
def test_stog_read_dataset(self): # Number of decimal places for precision places = 5 # Load S(Q) for Argon from test data stog = StoG( **{ '<b_coh>^2': self.kwargs['<b_coh>^2'], '<b_tot^2>': self.kwargs['<b_tot^2>'] }) info = { 'Filename': get_data_path(self.material.reciprocal_space_filename), 'ReciprocalFunction': 'S(Q)', 'Qmin': 0.02, 'Qmax': 35.2, 'Y': { 'Offset': 0.0, 'Scale': 1.0 }, 'X': { 'Offset': 0.0 } } info['index'] = 0 stog.read_dataset(info) # Check S(Q) data against targets self.assertEqual(stog.df_individuals.iloc[self.first].name, self.reciprocal_xtarget) self.assertAlmostEqual( stog.df_individuals.iloc[self.first]['S(Q)_%d' % info['index']], self.sq_target[0], places=places) self.assertAlmostEqual( stog.df_sq_individuals.iloc[self.first]['S(Q)_%d' % info['index']], self.sq_target[0], places=places)