def test_defences_predict(self): clip_values = (0, 1) fs = FeatureSqueezing(clip_values=clip_values, bit_depth=2) jpeg = JpegCompression(clip_values=clip_values, apply_predict=True) smooth = SpatialSmoothing() classifier_ = get_classifier_kr_tf() classifier = KerasClassifier(clip_values=clip_values, model=classifier_._model, defences=[fs, jpeg, smooth]) self.assertEqual(len(classifier.defences), 3) predictions_classifier = classifier.predict(self.x_test) # Apply the same defences by hand x_test_defense = self.x_test x_test_defense, _ = fs(x_test_defense, self.y_test) x_test_defense, _ = jpeg(x_test_defense, self.y_test) x_test_defense, _ = smooth(x_test_defense, self.y_test) classifier = get_classifier_kr_tf() predictions_check = classifier._model.predict(x_test_defense) # Check that the prediction results match np.testing.assert_array_almost_equal(predictions_classifier, predictions_check, decimal=4)
def test_random_noise(self): """ Test random noise. """ (_, _), (x_test, _) = self.mnist classifier = get_classifier_kr_tf() wrapped_classifier = OutputRandomNoise(classifier=classifier, scale=0.1) classifier_prediction_expected = np.asarray([[ 0.12109935, 0.0498215, 0.0993958, 0.06410096, 0.11366928, 0.04645343, 0.06419807, 0.30685693, 0.07616714, 0.05823757 ]], dtype=np.float32) wrapped_classifier_prediction_expected = np.asarray([[ 0.15412168, 0.0, 0.2222987, 0.03007976, 0.0381179, 0.12382449, 0.13755375, 0.22279163, 0.07121207, 0.0 ]], dtype=np.float32) np.testing.assert_array_almost_equal(classifier.predict(x_test[0:1]), classifier_prediction_expected, decimal=4) np.testing.assert_array_almost_equal( wrapped_classifier.predict(x_test[0:1]), wrapped_classifier_prediction_expected, decimal=4)
def test_loss_gradient(self): classifier = get_classifier_kr_tf() # Test gradient gradients = classifier.loss_gradient(self.x_test, self.y_test) self.assertTrue(gradients.shape == (NB_TEST, 28, 28, 1)) expected_gradients_1 = np.asarray([ 0.0559206, 0.05338925, 0.0648919, 0.07925165, -0.04029291, -0.11281465, 0.01850601, 0.00325054, 0.08163195, 0.03333949, 0.031766, -0.02420463, -0.07815556, -0.04698735, 0.10711591, 0.04086434, -0.03441073, 0.01071284, -0.04229195, -0.01386157, 0.02827487, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 ]) np.testing.assert_array_almost_equal(gradients[0, 14, :, 0], expected_gradients_1, decimal=4) expected_gradients_2 = np.asarray([ 0.00210803, 0.00213919, 0.00520981, 0.00548001, -0.0023059, 0.00432077, 0.00274945, 0.0, 0.0, -0.0583441, -0.00616604, 0.0526219, -0.02373985, 0.05273106, 0.10711591, 0.12773865, 0.0689289, 0.01337799, 0.10032021, 0.01681096, -0.00028647, -0.05588859, 0.01474165, 0.0, 0.0, 0.0, 0.0, 0.0 ]) np.testing.assert_array_almost_equal(gradients[0, :, 14, 0], expected_gradients_2, decimal=4)
def test_fit_image_generator(self): labels_test = np.argmax(self.y_test, axis=1) classifier = get_classifier_kr_tf() acc = np.sum( np.argmax(classifier.predict(self.x_test), axis=1) == labels_test) / NB_TEST logger.info('Accuracy: %.2f%%', (acc * 100)) keras_gen = ImageDataGenerator(width_shift_range=0.075, height_shift_range=0.075, rotation_range=12, shear_range=0.075, zoom_range=0.05, fill_mode='constant', cval=0) keras_gen.fit(self.x_train) data_gen = KerasDataGenerator(generator=keras_gen.flow( self.x_train, self.y_train, batch_size=BATCH_SIZE), size=NB_TRAIN, batch_size=BATCH_SIZE) classifier.fit_generator(generator=data_gen, nb_epochs=2) acc2 = np.sum( np.argmax(classifier.predict(self.x_test), axis=1) == labels_test) / NB_TEST logger.info('Accuracy: %.2f%%', (acc2 * 100)) self.assertEqual(acc, 0.32) self.assertAlmostEqual(acc2, 0.35, delta=0.02)
def test_repr(self): classifier = get_classifier_kr_tf() repr_ = repr(classifier) self.assertIn('art.classifiers.keras.KerasClassifier', repr_) self.assertIn('use_logits=False, channel_index=3', repr_) self.assertIn( 'clip_values=(0, 1), defences=None, preprocessing=(0, 1)', repr_) self.assertIn('input_layer=0, output_layer=0', repr_)
def test_save(self): path = 'tmp' filename = 'model.h5' classifier = get_classifier_kr_tf() classifier.save(filename, path=path) self.assertTrue(os.path.isfile(os.path.join(path, filename))) # Remove saved file os.remove(os.path.join(path, filename))
def test_learning_phase(self): classifier = get_classifier_kr_tf() self.assertFalse(hasattr(classifier, '_learning_phase')) classifier.set_learning_phase(False) self.assertFalse(classifier.learning_phase) classifier.set_learning_phase(True) self.assertTrue(classifier.learning_phase) self.assertTrue(hasattr(classifier, '_learning_phase'))
def test_layers(self): classifier = get_classifier_kr_tf() self.assertEqual(len(classifier.layer_names), 3) layer_names = classifier.layer_names for i, name in enumerate(layer_names): act_i = classifier.get_activations(self.x_test, i, batch_size=128) act_name = classifier.get_activations(self.x_test, name, batch_size=128) np.testing.assert_array_equal(act_name, act_i)
def test_shapes(self): classifier = get_classifier_kr_tf() predictions = classifier.predict(self.x_test) self.assertEqual(predictions.shape, self.y_test.shape) self.assertEqual(classifier.nb_classes(), 10) class_gradients = classifier.class_gradient(self.x_test[:11]) self.assertEqual(class_gradients.shape, tuple([11, 10] + list(self.x_test[1].shape))) loss_gradients = classifier.loss_gradient(self.x_test[:11], self.y_test[:11]) self.assertEqual(loss_gradients.shape, self.x_test[:11].shape)
def test_decimals_0_2(self): """ Test with cutoff of 0.2. """ (_, _), (x_test, _) = self.mnist classifier = get_classifier_kr_tf() wrapped_classifier = OutputHighConfidence(classifier=classifier, cutoff=0.2) classifier_prediction_expected = np.asarray([[0.12109935, 0.0498215, 0.0993958, 0.06410096, 0.11366928, 0.04645343, 0.06419807, 0.30685693, 0.07616714, 0.05823757]], dtype=np.float32) wrapped_classifier_prediction_expected = np.asarray([[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.30685693, 0.0, 0.0]], dtype=np.float32) np.testing.assert_array_almost_equal(classifier.predict(x_test[0:1]), classifier_prediction_expected, decimal=4) np.testing.assert_array_almost_equal(wrapped_classifier.predict(x_test[0:1]), wrapped_classifier_prediction_expected, decimal=4)
def test_fit(self): labels = np.argmax(self.y_test, axis=1) classifier = get_classifier_kr_tf() acc = np.sum( np.argmax(classifier.predict(self.x_test), axis=1) == labels) / NB_TEST logger.info('Accuracy: %.2f%%', (acc * 100)) classifier.fit(self.x_train, self.y_train, batch_size=BATCH_SIZE, nb_epochs=2) acc2 = np.sum( np.argmax(classifier.predict(self.x_test), axis=1) == labels) / NB_TEST logger.info('Accuracy: %.2f%%', (acc2 * 100)) self.assertEqual(acc, 0.32) self.assertEqual(acc2, 0.73)
def _run_tests(_loss_name, _loss_type, _y_test_pred_expected, _class_gradient_probabilities_expected, _loss_gradient_expected, _from_logits): master_seed(1234) classifier = get_classifier_kr_tf(loss_name=_loss_name, loss_type=_loss_type, from_logits=_from_logits) y_test_pred = np.argmax(classifier.predict(x=self.x_test), axis=1) np.testing.assert_array_equal(y_test_pred, _y_test_pred_expected) class_gradient = classifier.class_gradient(self.x_test, label=5) np.testing.assert_array_almost_equal( class_gradient[99, 0, 14, :, 0], _class_gradient_probabilities_expected) loss_gradient = classifier.loss_gradient(x=self.x_test, y=self.y_test) np.testing.assert_array_almost_equal(loss_gradient[99, 14, :, 0], _loss_gradient_expected)
def test_fit_generator(self): labels = np.argmax(self.y_test, axis=1) classifier = get_classifier_kr_tf() acc = np.sum( np.argmax(classifier.predict(self.x_test), axis=1) == labels) / NB_TEST logger.info('Accuracy: %.2f%%', (acc * 100)) gen = generator_fit(self.x_train, self.y_train, batch_size=BATCH_SIZE) data_gen = KerasDataGenerator(generator=gen, size=NB_TRAIN, batch_size=BATCH_SIZE) classifier.fit_generator(generator=data_gen, nb_epochs=2) acc2 = np.sum( np.argmax(classifier.predict(self.x_test), axis=1) == labels) / NB_TEST logger.info('Accuracy: %.2f%%', (acc2 * 100)) self.assertEqual(acc, 0.32) self.assertEqual(acc2, 0.36)
def test_class_labels(self): """ Test class labels. """ (_, _), (x_test, _) = self.mnist classifier = get_classifier_kr_tf() wrapped_classifier = OutputClassLabels(classifier=classifier) classifier_prediction_expected = np.asarray([[ 0.12109935, 0.0498215, 0.0993958, 0.06410096, 0.11366928, 0.04645343, 0.06419807, 0.30685693, 0.07616714, 0.05823757 ]], dtype=np.float32) wrapped_classifier_prediction_expected = np.asarray( [[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0]], dtype=np.float32) np.testing.assert_array_almost_equal(classifier.predict(x_test[0:1]), classifier_prediction_expected, decimal=4) np.testing.assert_array_almost_equal( wrapped_classifier.predict(x_test[0:1]), wrapped_classifier_prediction_expected, decimal=4)
def test_fit_kwargs(self): def get_lr(_): return 0.01 # Test a valid callback classifier = get_classifier_kr_tf() kwargs = {'callbacks': [LearningRateScheduler(get_lr)]} classifier.fit(self.x_train, self.y_train, batch_size=BATCH_SIZE, nb_epochs=1, **kwargs) # Test failure for invalid parameters kwargs = {'epochs': 1} with self.assertRaises(TypeError) as context: classifier.fit(self.x_train, self.y_train, batch_size=BATCH_SIZE, nb_epochs=1, **kwargs) self.assertIn('multiple values for keyword argument', str(context.exception))
def test_class_gradient(self): classifier = get_classifier_kr_tf() # Test all gradients label gradients = classifier.class_gradient(self.x_test) self.assertTrue(gradients.shape == (NB_TEST, 10, 28, 28, 1)) expected_gradients_1 = np.asarray([ -1.0557447e-03, -1.0079544e-03, -7.7426434e-04, 1.7387432e-03, 2.1773507e-03, 5.0880699e-05, 1.6497371e-03, 2.6113100e-03, 6.0904310e-03, 4.1080985e-04, 2.5268078e-03, -3.6661502e-04, -3.0568996e-03, -1.1665225e-03, 3.8904310e-03, 3.1726385e-04, 1.3203260e-03, -1.1720930e-04, -1.4315104e-03, -4.7676818e-04, 9.7251288e-04, 0.0000000e+00, 0.0000000e+00, 0.0000000e+00, 0.0000000e+00, 0.0000000e+00, 0.0000000e+00, 0.0000000e+00 ]) np.testing.assert_array_almost_equal(gradients[0, 5, 14, :, 0], expected_gradients_1, decimal=4) expected_gradients_2 = np.asarray([ -0.00367321, -0.0002892, 0.00037825, -0.00053344, 0.00192121, 0.00112047, 0.0023135, 0.0, 0.0, -0.00391743, -0.0002264, 0.00238103, -0.00073711, 0.00270405, 0.00389043, 0.00440818, -0.00412769, -0.00441794, 0.00081916, -0.00091284, 0.00119645, -0.00849089, 0.00547925, 0.0, 0.0, 0.0, 0.0, 0.0 ]) np.testing.assert_array_almost_equal(gradients[0, 5, :, 14, 0], expected_gradients_2, decimal=4) # Test 1 gradient label = 5 gradients = classifier.class_gradient(self.x_test, label=5) self.assertTrue(gradients.shape == (NB_TEST, 1, 28, 28, 1)) expected_gradients_1 = np.asarray([ -1.0557447e-03, -1.0079544e-03, -7.7426434e-04, 1.7387432e-03, 2.1773507e-03, 5.0880699e-05, 1.6497371e-03, 2.6113100e-03, 6.0904310e-03, 4.1080985e-04, 2.5268078e-03, -3.6661502e-04, -3.0568996e-03, -1.1665225e-03, 3.8904310e-03, 3.1726385e-04, 1.3203260e-03, -1.1720930e-04, -1.4315104e-03, -4.7676818e-04, 9.7251288e-04, 0.0000000e+00, 0.0000000e+00, 0.0000000e+00, 0.0000000e+00, 0.0000000e+00, 0.0000000e+00, 0.0000000e+00 ]) np.testing.assert_array_almost_equal(gradients[0, 0, 14, :, 0], expected_gradients_1, decimal=4) expected_gradients_2 = np.asarray([ -0.00367321, -0.0002892, 0.00037825, -0.00053344, 0.00192121, 0.00112047, 0.0023135, 0.0, 0.0, -0.00391743, -0.0002264, 0.00238103, -0.00073711, 0.00270405, 0.00389043, 0.00440818, -0.00412769, -0.00441794, 0.00081916, -0.00091284, 0.00119645, -0.00849089, 0.00547925, 0.0, 0.0, 0.0, 0.0, 0.0 ]) np.testing.assert_array_almost_equal(gradients[0, 0, :, 14, 0], expected_gradients_2, decimal=4) # Test a set of gradients label = array label = np.random.randint(5, size=NB_TEST) gradients = classifier.class_gradient(self.x_test, label=label) self.assertTrue(gradients.shape == (NB_TEST, 1, 28, 28, 1)) expected_gradients_1 = np.asarray([ 5.0867125e-03, 4.8564528e-03, 6.1040390e-03, 8.6531248e-03, -6.0958797e-03, -1.4114540e-02, -7.1085989e-04, -5.0330814e-04, 1.2943064e-02, 8.2416134e-03, -1.9859476e-04, -9.8109958e-05, -3.8902222e-03, -1.2945873e-03, 7.5137997e-03, 1.7720886e-03, 3.1399424e-04, 2.3657181e-04, -3.0891625e-03, -1.0211229e-03, 2.0828887e-03, 0.0000000e+00, 0.0000000e+00, 0.0000000e+00, 0.0000000e+00, 0.0000000e+00, 0.0000000e+00, 0.0000000e+00 ]) np.testing.assert_array_almost_equal(gradients[0, 0, 14, :, 0], expected_gradients_1, decimal=4) expected_gradients_2 = np.asarray([ -0.00195835, -0.00134457, -0.00307221, -0.00340564, 0.00175022, -0.00239714, -0.00122619, 0.0, 0.0, -0.00520899, -0.00046105, 0.00414874, -0.00171095, 0.00429184, 0.0075138, 0.00792442, 0.0019566, 0.00035517, 0.00504575, -0.00037397, 0.00022343, -0.00530034, 0.0020528, 0.0, 0.0, 0.0, 0.0, 0.0 ]) np.testing.assert_array_almost_equal(gradients[0, 0, :, 14, 0], expected_gradients_2, decimal=4)