Example #1
0
def test_interpolate_wot_on_v_grid(h5_accdb):
    def interpolate_veh(case):
        _prop, wot, n2vs = vehdb.load_vehicle_accdb(h5_accdb, case)

        wot = wot[["Pwot", "ASM"]]
        wot["n"] = wot.index

        return engine.interpolate_wot_on_v_grid(wot, n2vs)

    all_cases = vehdb.all_vehnums(h5_accdb)
    results = {wio.veh_name(case): interpolate_veh(case) for case in all_cases}
Example #2
0
def test_calc_p_available(h5_accdb):
    def check_p_avail(case):
        _prop, wot, _n2vs = vehdb.load_vehicle_accdb(h5_accdb, case)

        p_avail = engine.calc_p_available(wot["Pwot"], 0.1, wot["ASM"])

        try:
            assert (p_avail - wot["Pavai"] < 1e-12).all()
        except Exception as ex:
            if isinstance(ex, AssertionError) and case == 48:
                print(f"Ignoring known BAD case {case} with ghost ASM.")
            else:
                raise

    all_cases = vehdb.all_vehnums(h5_accdb)
    for case in all_cases:
        check_p_avail(case)
Example #3
0
def test_calc_n_95(h5_accdb):
    results = []
    visited_wots = set()
    for case in vehdb.all_vehnums(h5_accdb):
        (props, wot, _a) = vehdb.load_vehicle_accdb(h5_accdb, case)
        vehnum = props["vehicle_no"]
        if vehnum in visited_wots:
            continue
        visited_wots.add(vehnum)

        props = props.rename({
            "idling_speed": "n_idle",
            "rated_speed": "n_rated",
            "rated_power": "p_rated",
        })
        wot = wot.rename({"Pwot": "p", "Pwot_norm": "p_norm"}, axis=1)
        wot["n"] = wot.index
        wot = engine.preproc_wot(
            props.rename({
                "idling_speed": "n_idle",
                "rated_speed": "n_rated"
            }), wot)
        n95 = engine.calc_n_95(wot, props["n_rated"], props["p_rated"])
        results.append(n95)

    df = pd.DataFrame(results,
                      columns=["n95_low", "n95_high"],
                      dtype="float64")

    # print(df.describe().values)
    aggregate_tol = 1e-4  # The digits copied from terminal.
    exp = np.array([
        [116.0, 116.0],
        [3656.11189008, 4784.66622629],
        [1337.23040635, 1428.79658641],
        [1680.0, 2897.4405215],
        [2837.63712814, 3750.68145459],
        [3215.01884177, 4142.35055724],
        [4512.5, 6000.03571429],
        [7843.72440418, 8817.60270757],
    ])
    assert (df.describe().values - exp < aggregate_tol).all(None)
Example #4
0
def _permatest_and_random_vehnums(h5_accdb):
    sample_ratio = 0.14  # ~x7 test-runs would cover all
    with vehdb.openh5(h5_accdb) as h5db:
        all_vehs = set(vehdb.all_vehnums(h5db))

    permatest_vehs = [
        1,
        # >9 gears
        23,
        # Known bads
        42,
        46,
        48,
        52,
        53,
        90,
        # AccDB not respecting n_min=0.9 x n_idle (Annex 2-3.k.3)
        25,
        # Diffs in gears above 2
        35,
        # Vehicle has too many insufficient powers
        75,
        # Extensions
        117,
        119,
        121,
        125,
    ]
    remain_vehs = all_vehs - set(permatest_vehs)
    sample_size = int(sample_ratio * len(remain_vehs))
    sample_vehs = random.sample(remain_vehs, sample_size)

    run_vehs = permatest_vehs + sample_vehs
    log.info(
        "Sample-testing %s(%.1f%%) out of %s accdb vehicles (%.1f%% at random).",
        len(run_vehs),
        100 * len(run_vehs) / len(all_vehs),
        len(all_vehs),
        100 * sample_ratio,
    )
    return run_vehs