Example #1
0
def test_identity():
    np.random.seed(133391)
    shape = [2, 4]
    input_data = np.random.randn(*shape).astype(np.float32)

    identity_node = make_node('Identity', inputs=['x'], outputs=['y'])
    ng_results = run_node(identity_node, [input_data])
    assert np.array_equal(ng_results, [input_data])

    node1 = make_node('Add',
                      inputs=['A', 'B'],
                      outputs=['add1'],
                      name='add_node1')
    node2 = make_node('Identity',
                      inputs=['add1'],
                      outputs=['identity1'],
                      name='identity_node1')
    node3 = make_node('Abs',
                      inputs=['identity1'],
                      outputs=['Y'],
                      name='abs_node1')

    graph = make_graph([node1, node2, node3], 'test_graph', [
        make_tensor_value_info('A', onnx.TensorProto.FLOAT, shape),
        make_tensor_value_info('B', onnx.TensorProto.FLOAT, shape)
    ], [make_tensor_value_info('Y', onnx.TensorProto.FLOAT, shape)])
    model = make_model(graph, producer_name='ngraph ONNX Importer')
    ng_model_function = import_onnx_model(model)
    runtime = get_runtime()
    computation = runtime.computation(ng_model_function)
    ng_results = computation(input_data, input_data)
    expected_result = np.abs(input_data + input_data)

    assert np.array_equal(ng_results[0], expected_result)
Example #2
0
def import_and_compute_matmul(input_left, input_right):
    input_data_left = np.array(input_left)
    input_data_right = np.array(input_right)
    onnx_model = make_onnx_model_for_matmul_op(input_data_left, input_data_right)
    transformer = get_runtime()
    ng_model_function = import_onnx_model(onnx_model)
    computation = transformer.computation(ng_model_function)
    return computation(input_data_left, input_data_right)[0]
Example #3
0
def import_and_compute_conv(x, weights, transpose=False, **attributes):
    x, weights = np.array(x), np.array(weights)
    onnx_model = make_onnx_model_for_conv_op(x.shape,
                                             weights.shape,
                                             transpose=transpose,
                                             **attributes)
    ng_model_function = import_onnx_model(onnx_model)[0]
    computation = get_runtime().computation(ng_model_function)
    return computation(x, weights)
Example #4
0
def import_and_compute_gemm(input_a, input_b, input_c, **kwargs):
    input_a, input_b, input_c = np.array(input_a), np.array(input_b), np.array(input_c)

    if kwargs.get('trans_a'):
        kwargs['transA'] = kwargs['trans_a']
        del kwargs['trans_a']

    if kwargs.get('trans_b'):
        kwargs['transB'] = kwargs['trans_b']
        del kwargs['trans_b']

    onnx_model = make_onnx_model_for_gemm_op(input_a, input_b, input_c, **kwargs)
    transformer = get_runtime()
    ng_model_function = import_onnx_model(onnx_model)
    computation = transformer.computation(ng_model_function)
    return computation(input_a, input_b, input_c)
Example #5
0
def test_simple_graph():
    node1 = make_node('Add', ['A', 'B'], ['X'], name='add_node1')
    node2 = make_node('Add', ['X', 'C'], ['Y'], name='add_node2')
    graph = make_graph([node1, node2], 'test_graph', [
        make_tensor_value_info('A', onnx.TensorProto.FLOAT, [1]),
        make_tensor_value_info('B', onnx.TensorProto.FLOAT, [1]),
        make_tensor_value_info('C', onnx.TensorProto.FLOAT, [1])
    ], [make_tensor_value_info('Y', onnx.TensorProto.FLOAT, [1])])
    model = make_model(graph, producer_name='ngraph ONNXImporter')

    ng_model_function = import_onnx_model(model)[0]

    runtime = get_runtime()
    computation = runtime.computation(ng_model_function)
    assert np.array_equal(computation(1, 2, 3),
                          np.array([6.0], dtype=np.float32))
    assert np.array_equal(computation(4, 5, 6),
                          np.array([15.0], dtype=np.float32))
Example #6
0
def test_reshape_opset5():
    original_shape = [2, 3, 4]
    test_cases = {
        'reordered_dims': np.array([4, 2, 3], dtype=np.int64),
        'reduced_dims': np.array([3, 8], dtype=np.int64),
        'extended_dims': np.array([3, 2, 2, 2], dtype=np.int64),
        'one_dim': np.array([24], dtype=np.int64),
        'negative_dim': np.array([6, -1, 2], dtype=np.int64),
    }
    input_data = np.random.random_sample(original_shape).astype(np.float32)

    for test_name, shape in test_cases.items():
        const_node = make_node('Constant',
                               inputs=[],
                               outputs=['const_shape'],
                               value=onnx.helper.make_tensor(
                                   name='const_tensor',
                                   data_type=onnx.TensorProto.INT64,
                                   dims=shape.shape,
                                   vals=shape.flatten()))
        reshape_node = onnx.helper.make_node('Reshape',
                                             inputs=['data', 'const_shape'],
                                             outputs=['reshaped'])

        graph = make_graph([const_node, reshape_node], 'test_graph', [
            make_tensor_value_info('data', onnx.TensorProto.FLOAT,
                                   input_data.shape)
        ], [make_tensor_value_info('reshaped', onnx.TensorProto.FLOAT, ())])

        model = make_model(graph, producer_name='ngraph ONNX Importer')
        model.opset_import[0].version = 5
        ng_model_function = import_onnx_model(model)
        runtime = get_runtime()
        computation = runtime.computation(ng_model_function)
        ng_results = computation(input_data)
        expected_output = np.reshape(input_data, shape)
        assert np.array_equal(ng_results[0], expected_output)