Example #1
0
    def __init__(self,
                 pretrained_model_name=None,
                 cache_dir=None,
                 hparams=None):

        super(BERTClassifier, self).__init__(hparams=hparams)

        with tf.variable_scope(self.variable_scope):
            # Creates the underlying encoder
            encoder_hparams = dict_fetch(hparams,
                                         BERTEncoder.default_hparams())
            if encoder_hparams is not None:
                encoder_hparams['name'] = None
            self._encoder = BERTEncoder(
                pretrained_model_name=pretrained_model_name,
                cache_dir=cache_dir,
                hparams=encoder_hparams)

            # Creates an dropout layer
            drop_kwargs = {"rate": self._hparams.dropout}
            layer_hparams = {"type": "Dropout", "kwargs": drop_kwargs}
            self._dropout_layer = get_layer(hparams=layer_hparams)

            # Creates an additional classification layer if needed
            self._num_classes = self._hparams.num_classes
            if self._num_classes <= 0:
                self._logit_layer = None
            else:
                logit_kwargs = self._hparams.logit_layer_kwargs
                if logit_kwargs is None:
                    logit_kwargs = {}
                elif not isinstance(logit_kwargs, HParams):
                    raise ValueError(
                        "hparams['logit_layer_kwargs'] must be a dict.")
                else:
                    logit_kwargs = logit_kwargs.todict()
                logit_kwargs.update({"units": self._num_classes})
                if 'name' not in logit_kwargs:
                    logit_kwargs['name'] = "logit_layer"

                layer_hparams = {"type": "Dense", "kwargs": logit_kwargs}
                self._logit_layer = get_layer(hparams=layer_hparams)
Example #2
0
    def default_hparams():
        r"""Returns a dictionary of hyperparameters with default values.

        .. code-block:: python

            {
                # (1) Same hyperparameters as in BertEncoder
                ...
                # (2) Additional hyperparameters
                "num_classes": 2,
                "logit_layer_kwargs": None,
                "clas_strategy": "cls_time",
                "max_seq_length": None,
                "dropout": 0.1,
                "name": "bert_classifier"
            }

        Here:

        1. Same hyperparameters as in
        :class:`~texar.tf.modules.BertEncoder`.
        See the :meth:`~texar.tf.modules.BertEncoder.default_hparams`.
        An instance of BertEncoder is created for feature extraction.

        2. Additional hyperparameters:

            `"num_classes"`: int
                Number of classes:

                - If **> 0**, an additional :tf_main:`Dense <layers/Dense>`
                  layer is appended to the encoder to compute the logits over
                  classes.
                - If **<= 0**, no dense layer is appended. The number of
                  classes is assumed to be the final dense layer size of the
                  encoder.

            `"logit_layer_kwargs"`: dict
                Keyword arguments for the logit Dense layer constructor,
                except for argument "units" which is set to `num_classes`.
                Ignored if no extra logit layer is appended.

            `"clas_strategy"`: str
                The classification strategy, one of:

                - **cls_time**: Sequence-level classification based on the
                  output of the first time step (which is the `CLS` token).
                  Each sequence has a class.
                - **all_time**: Sequence-level classification based on
                  the output of all time steps. Each sequence has a class.
                - **time_wise**: Step-wise classification, i.e., make
                  classification for each time step based on its output.

            `"max_seq_length"`: int, optional
                Maximum possible length of input sequences. Required if
                `clas_strategy` is `all_time`.

            `"dropout"`: float
                The dropout rate of the BERT encoder output.

            `"name"`: str
                Name of the classifier.
        """

        hparams = BERTEncoder.default_hparams()
        hparams.update({
            "num_classes": 2,
            "logit_layer_kwargs": None,
            "clas_strategy": "cls_time",
            "max_seq_length": None,
            "dropout": 0.1,
            "name": "bert_classifier"
        })
        return hparams