Example #1
0
def get_layer(hparams: Union[HParams, Dict[str, Any]]) -> nn.Module:
    r"""Makes a layer instance.

    The layer must be an instance of :torch_nn:`Module`.

    Args:
        hparams (dict or HParams): Hyperparameters of the layer, with
            structure:

            .. code-block:: python

                {
                    "type": "LayerClass",
                    "kwargs": {
                        # Keyword arguments of the layer class
                        # ...
                    }
                }

            Here:

            `"type"`: str or layer class or layer instance
                The layer type. This can be

                - The string name or full module path of a layer class. If
                  the class name is provided, the class must be in module
                  :torch_nn:`Module`, :mod:`texar.torch.core`, or
                  :mod:`texar.torch.custom`.
                - A layer class.
                - An instance of a layer class.

                For example

                .. code-block:: python

                    "type": "Conv1D"                               # class name
                    "type": "texar.torch.core.MaxReducePooling1D"  # module path
                    "type": "my_module.MyLayer"                    # module path
                    "type": torch.nn.Module.Linear                 # class
                    "type": Conv1D(filters=10, kernel_size=2)  # cell instance
                    "type": MyLayer(...)                       # cell instance

            `"kwargs"`: dict
                A dictionary of keyword arguments for constructor of the
                layer class. Ignored if :attr:`"type"` is a layer instance.

                - Arguments named "activation" can be a callable, or a `str` of
                  the name or module path to the activation function.
                - Arguments named "\*_regularizer" and "\*_initializer" can be a
                  class instance, or a `dict` of hyperparameters of respective
                  regularizers and initializers. See
                - Arguments named "\*_constraint" can be a callable, or a `str`
                  of the name or full path to the constraint function.

    Returns:
        A layer instance. If ``hparams["type"]`` is a layer instance, returns it
        directly.

    Raises:
        ValueError: If :attr:`hparams` is `None`.
        ValueError: If the resulting layer is not an instance of
            :torch_nn:`Module`.
    """
    if hparams is None:
        raise ValueError("`hparams` must not be `None`.")

    layer_type = hparams["type"]
    if not is_str(layer_type) and not isinstance(layer_type, type):
        layer = layer_type
    else:
        layer_modules = ["torch.nn", "texar.torch.core", "texar.torch.custom"]
        layer_class: Type[nn.Module] = utils.check_or_get_class(
            layer_type, layer_modules)
        if isinstance(hparams, dict):
            if (layer_class.__name__ == "Linear" and
                    "in_features" not in hparams["kwargs"]):
                raise ValueError("\"in_features\" should be specified for "
                                 "\"torch.nn.{}\"".format(layer_class.__name__))
            elif (layer_class.__name__ in ["Conv1d", "Conv2d", "Conv3d"] and
                  "in_channels" not in hparams["kwargs"]):
                raise ValueError("\"in_channels\" should be specified for "
                                 "\"torch.nn.{}\"".format(layer_class.__name__))
            default_kwargs = _layer_class_to_default_kwargs_map.get(
                layer_class, {})
            default_hparams = {"type": layer_type, "kwargs": default_kwargs}
            hparams = HParams(hparams, default_hparams)

        # this case needs to be handled separately because
        # :torch_nn:`Sequential`
        # does not accept kwargs
        if layer_type == "Sequential":
            names: List[str] = []
            layer = nn.Sequential()
            sub_hparams = hparams.kwargs.layers
            for hparam in sub_hparams:
                sub_layer = get_layer(hparam)
                name = utils.uniquify_str(sub_layer._get_name(), names)
                names.append(name)
                layer.add_module(name=name, module=sub_layer)
        else:
            layer = utils.get_instance(layer_type, hparams.kwargs.todict(),
                                       layer_modules)

    if not isinstance(layer, nn.Module):
        raise ValueError("layer must be an instance of `torch.nn.Module`.")

    return layer
 def _maybe_name_to_id(self, name_or_id):
     if is_str(name_or_id):
         if name_or_id not in self._name_to_id:
             raise ValueError("Unknown data name: {}".format(name_or_id))
         return self._name_to_id[name_or_id]
     return name_or_id