class TestDecisionTreeClassifier(unittest.TestCase): def setUp(self): self.classifier = DecisionTreeClassifier(train_set) def test_classify(self): res = self.classifier.classify("I feel happy this morning") assert_equal(res, 'positive') assert_equal(len(self.classifier.train_set), len(train_set)) def test_accuracy(self): acc = self.classifier.accuracy(test_set) assert_true(isinstance(acc, float)) def test_update(self): original_length = len(self.classifier.train_set) self.classifier.update([("lorem ipsum", "positive")]) new_length = len(self.classifier.train_set) assert_equal(original_length + 1, new_length) def test_custom_feature_extractor(self): cl = DecisionTreeClassifier(train_set, custom_extractor) cl.classify("Yay! I'm so happy it works.") assert_equal(cl.train_features[0][1], 'positive') def test_pseudocode(self): code = self.classifier.pseudocode() assert_true("if" in code) def test_pp(self): pp = self.classifier.pprint(width=60) assert_true(isinstance(pp, unicode))
def test_custom_feature_extractor(self): cl = DecisionTreeClassifier(train_set, custom_extractor) cl.classify("Yay! I'm so happy it works.") assert_equal(cl.train_features[0][1], 'positive')
def setUp(self): self.classifier = DecisionTreeClassifier(train_set)